Unlabelled: Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element.
View Article and Find Full Text PDFLow-voltage organic field-effect transistor memory devices exhibiting a wide memory window, low power consumption, acceptable retention, endurance properties, and tunable memory performance are fabricated. The performance is achieved by employing single-crystal C60 needles and copper phthalocyanine nanoparticles to produce an ambipolar (hole/electron) trapping effect in a double floating-gate architecture.
View Article and Find Full Text PDFWe report the facile fabrication and characteristics of organic thin film transistor (OTFT)-based nonvolatile memory devices using the hybrid nanocomposites of semiconducting poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2) and ligand-capped Au nanoparticles (NPs), thereby serving as a charge storage medium. Electrical bias sweep/excitation effectively modulates the current response of hybrid memory devices through the charge transfer between F8T2 channel and functionalized Au NPs trapping sites. The electrical performance of the hybrid memory devices can be effectively controlled though the loading concentrations (0-9 %) of Au NPs and organic thiolate ligands on Au NP surfaces with different carbon chain lengths (Au-L6, Au-L10, and Au-L18).
View Article and Find Full Text PDFWe demonstrate a novel approach to improve the characteristics of the gold nanoparticle-based organic transistor memory devices by using self-assembled monolayers (SAM) with different functional groups as interfacial modifier. SAM-based interfacial engineering significantly improved the hysteresis, memory window, and on/off ratio of a nano floating gate memory (NFGM) at zero gate voltage. This NFGM showed a large memory window of up to 190 V and on/off current ratio of 10(5) during writing and erasing with an operation voltage of 100 V of gate bias in a short time, less than 1 s.
View Article and Find Full Text PDFIn this communication, we demonstrate the inter-conversion of crystal structure of aluminium doped zinc oxide (AZO) thin films from highly (002) plane oriented vertical growth to (103) plane oriented lateral growth by adjusting the polarity of the self-assembled monolayers (SAMs) on glass substrates at room temperature.
View Article and Find Full Text PDFTin doped indium oxide (ITO) films have generated tremendous research interest and received widespread applications in optoelectronic devices due to a good combination of desired optical and electrical properties. Their electrical properties vary depending on the crystallinity of the film. A good quality ITO film should have low resistivity, which can be achieved with highly crystalline films deposited at very high temperature.
View Article and Find Full Text PDF