Cell signaling is highly integrated for the process of various cell activities. Although previous studies have shown how individual genes contribute to cell migration, it remains unclear how the integration of these signaling pathways is involved in the modulation of cell migration. In our migration screen, we revealed that serine-threonine kinase 40 (STK40) and mitogen-activated protein kinase (MAPK) worked synergistically, and the suppression of both genes could further lead to suppression in cell migration.
View Article and Find Full Text PDFCell migration is an essential biological process for organisms, in processes including embryonic development, immune response, and cancer metastasis. To elucidate the regulatory machinery of this vital process, methods that mimic in vivo migration, including in vitro wound healing assay and random migration assay, are widely used for cell behavior investigation. However, several concerns are raised with traditional cell migration experiment analysis.
View Article and Find Full Text PDFObjectives: Human oral squamous cell carcinoma (OSCC) produces an inflammatory microenvironment enriched with cytokines including interleukin-6 (IL-6); however, the underlying molecular mechanisms of OSCC progression are unclear. We aimed to delineate the STAT3-mediated signaling pathways involved in tumor cell survival and growth.
Materials And Methods: Immunohistochemistry was used to semi-quantitate IL-6 and STAT3 in 111 OSCC tissues.
Integrating signals is essential for cell survival, leading to the concept of synthetic lethality. However, how signaling is integrated to control cell migration remains unclear. By conducting a "two-hit" screen, we revealed the synergistic reduction of cell migration when serine-threonine kinase 40 (STK40) and mitogen-activated protein kinase (MAPK) were simultaneously suppressed.
View Article and Find Full Text PDF