Optimizing the interaction between antibody (mAb)-based therapeutics and immune effector functions (EFs) offers opportunities to improve the therapeutic window of these molecules. However, the role of EFs in antibody-drug conjugate (ADC) efficacy and toxicity remains unknown, with limited studies that have investigated how modulation of EF affects the pharmacology of ADCs. This study aimed to evaluate the effect of EF modulation on ADC efficacy using trastuzumab-vc-MMAE as a model ADC.
View Article and Find Full Text PDFAims: This study aims to develop a generalized pharmacokinetic (PK) model for monomethyl auristatin E (MMAE)-based antibody-drug conjugates (ADCs) that can simultaneously capture the PK of multiple ADC analytes commonly measured in the clinic.
Methods: A comprehensive literature review was conducted to collect PK data on MMAE-based ADCs from clinical trials. From each study, PK profiles of total antibody, the ADC, conjugated MMAE, and unconjugated MMAE, were extracted.
We hypothesize that different routes of administration may lead to altered pharmacokinetics/pharmacodynamics (PK/PD) behavior of antibody-drug conjugates (ADCs) and may help to improve their therapeutic index. To evaluate this hypothesis, here we performed PK/PD evaluation for an ADC administered via subcutaneous (SC) and intratumoral (IT) routes. Trastuzumab-vc-MMAE was used as the model ADC, and NCI-N87 tumor-bearing xenografts were used as the animal model.
View Article and Find Full Text PDFPurpose: To quantitate and mathematically characterize the whole-body pharmacokinetics (PK) of different ADC analytes following administration of an MMAE-conjugated ADC in tumor-bearing mice.
Methods: The PK of different ADC analytes (total antibody, total drug, unconjugated drug) was measured following administration of an MMAE-conjugated ADC in tumor-bearing mice. The PK of ADC analytes was compared with the whole-body PK of the antibody and drug obtained following administration of these molecules alone.
Antibody drug-conjugates (ADCs) targeting human epidermal growth factor (HER2) are a rapidly expanding class of cancer therapeutics. Such ADCs are known to suffer from inefficient trafficking to the lysosome due to HER2 endosomal recycling, leaving most bound ADCs at the cell surface or in early endosomes. This study aims to increase the maximum cytotoxicity of ADC treatment by co-delivering a small molecule inhibitor targeting the primary chaperone of HER2, heat shock protein 90 (HSP90).
View Article and Find Full Text PDFThe ocular pharmacokinetics (PK) of antibody-based therapies are infrequently studied in mice due to the technical difficulties in working with the small murine eye. This study is the first of its kind to quantitatively measure the PK of variously sized proteins in the plasma, cornea/ICB, vitreous humor, retina, and posterior cup (including choroid) of the mouse and to evaluate the relationship between molecular weight (MW) and antibody biodistribution coefficient (BC) to the eye. Proteins analyzed include trastuzumab (150 kDa), trastuzumab-vc-MMAE (T-vc-MMAE, 155 kDa), F(ab) (100 kDa), Fab (50 kDa), and scFv (27 kDa).
View Article and Find Full Text PDFAims: In order to better predict the pharmacokinetics (PK) of antibodies in children, and to facilitate dose optimization of antibodies in paediatric patients, there is a need to develop systems PK models that integrate ontogeny-related changes in human physiological parameters.
Methods: A population-based physiological-based PK (PBPK) model to characterize antibody PK in paediatrics has been developed, by incorporating age-related changes in body weight, organ weight, organ blood flow rate and interstitial volumes in a previously published platform model. The model was further used to perform Monte Carlo simulations to investigate clearance vs.
In the past, our lab proposed a two-pore PBPK model for different-size protein therapeutics using de novo derived parameters and the model was validated using plasma PK data of different-size antibody fragments digitized from the literature (Li Z, Shah DK, J Pharmacokinet Pharmacodynam 46(3):305-318, 2009). To further validate the model using tissue distribution data, whole-body biodistribution study of 6 different-size proteins in mice were conducted. Studied molecules covered a wide MW range (13-150 kDa).
View Article and Find Full Text PDFQuantitative modeling of the subcutaneous absorption processes of protein therapeutics is challenging. Here we have proposed a "two-pore" PBPK model that is able to simultaneously characterize plasma PK of different-size protein therapeutics in mice. The skin compartment is evolved to mechanistically account for the absorption pathways through lymph and blood capillaries, as well as local degradation at the SC injection site.
View Article and Find Full Text PDFMonomethyl auristatin E (MMAE) is one of the most commonly used payloads for developing antibody-drug conjugates (ADC). However, limited studies have comprehensively evaluated the whole-body disposition of MMAE. Consequently, here, we have investigated the whole-body pharmacokinetics (PK) of MMAE in tumor-bearing mice.
View Article and Find Full Text PDFDevelopment of comprehensive and updated quantitative relationships between physiological parameters and age for pediatrics remains to be accomplished. Towards this goal, we have performed a thorough literature search and collected published data on organ weights and organ blood flow rates for 0-20-year-old male and female human subjects. The data were used to develop continuous relationships between physiological parameters and age, using a single form of mathematical equation.
View Article and Find Full Text PDFHere we have reported whole-body disposition of wild-type IgG and FcRn non-binding IgG in mice, determined using Enzyme-Linked Immunosorbent Assay (ELISA). The disposition data generated using ELISA are compared with previously published biodistribution data generated using radiolabelled IgG. In addition, we introduce a novel concept of ABC values, which are defined as percentage ratios of tissue interstitial and plasma AUC values.
View Article and Find Full Text PDFTotal antibody, conjugated antibody or antibody-conjugated drug, and free drug are key analytes required to establish exposure-response relationships for ADCs. Therefore, bioanalytical strategies for ADCs include ligand-binding assays (LBA) and LC-MS/MS methods. Here we describe detailed methodology to develop a solid-phase-based enzyme-linked immunosorbent assay (ELISA), which is the most widely used LBA to quantify large-molecule components of ADC in biological matrices such as plasma, serum, tumor, or tissue homogenates.
View Article and Find Full Text PDFIn this study, we evaluated the effect of size on tumor disposition of protein therapeutics, including the plasma and tumor pharmacokinetics (PK) of trastuzumab (∼150 kDa), FcRn-nonbinding trastuzumab (∼150 kDa), F(ab) fragment of trastuzumab (∼100 kDa), Fab fragment of trastuzumab (∼50 kDa), and trastuzumab scFv (∼27 kDa) in both antigen (i.e., HER2)-overexpressing (N87) and antigen-nonexpressing (MDA-MB-468) tumor-bearing mice.
View Article and Find Full Text PDF