We demonstrate a reflective polarizer-free electro-optical switch using dye-doped polymer-stabilized blue phase liquid crystals (DDPSBP-LC). At the voltage-off state, the dye molecules and liquid crystals form the structure of the double twist cylinders. As a result, the DDPSBP-LC is in dark state due to the combination of Bragg reflection and light absorption.
View Article and Find Full Text PDFA bistable, polarizer-free, and reflective electro-optical switch based on a droplet manipulation on a liquid crystal and polymer composite film (LCPCF) is demonstrated. A color droplet on LCPCF can be manipulated by a wettability gradient owning to the distribution of LC directors anchored among the polymer grains on LCPCF. The contrast ratio is around 8:1 in a reflective mode.
View Article and Find Full Text PDFWe present here the crucial effects of material anisotropy on optical field induced pattern formation in the one-feedback-mirror arrangement which utilizes the nematic liquid crystal film as the nonlinear medium. By using the quasi-static electric-field-biased planar-aligned homogeneous nematic liquid crystal (NLC) films, we observe both the hexagon and the roll patterns which can be switched optically due to the intrinsic anisotropic distribution of the threshold intensity. The anisotropy comes from the anisotropic nonlinear response of the NLC film and is the crucial factor for such a one-feedback-mirror system to form both the roll and hexagon patterns.
View Article and Find Full Text PDF