Synthetic polymer nanoparticles (NPs) with biomimetic properties are ideally suited for different biomedical applications such as drug delivery and direct therapy. However, bulk synthetic approaches can suffer from poor reproducibility and scalability when precise size control or multi-step procedures are required. Herein, we report an integrated microfluidic chip for the synthesis of polymer NPs.
View Article and Find Full Text PDFNuclear factor kappa B (NF-κB) is a key regulator in immune signaling and is known to exhibit a digital activation pattern. Yet the molecular basis underlying the heterogeneity in NF-κB activation at single-cell level is not entirely understood. Here, we show that NF-κB activation in single cells is largely regulated by intrinsic differences at the receptor level.
View Article and Find Full Text PDFTwo organic-inorganic hybrid zinc phosphites incorporating 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene (TIMB) molecules were synthesized under hydro(solvo)thermal methods and structurally characterized by single-crystal X-ray diffraction (SCXD). Interestingly, the solvent ratio of water to dimethylformamide induced the formation of a new compound of Zn(TIMB)(HPO)·3HO () and our previously reported structure of Zn(TIMB)(HPO)·HO (). Additionally, their dehydrated crystals ( and ) were prepared through heat treatment at 150 °C.
View Article and Find Full Text PDFIn this study, the potential of complex emulsions is investigated as transducers in sensing applications. Complex emulsions are stabilized without external detergents by developing a novel α-cyanostilbene substituted with PEG and semi-perfluoroalkyl chain (CNFCPEG). CNFCPEG exhibits unique variable emission properties depending on its aggregation state, allowing dual blue and green emissions in complex emulsions with hydrocarbon-in-fluorocarbon-in-water (H/F/W) morphology.
View Article and Find Full Text PDFInteractions of the cell with its environment are mediated by the cell membrane and membrane-localized molecules. Supported lipid bilayers have enabled the recapitulation of the basic properties of cell membranes and have been broadly used to further our understanding of cellular behavior. Coupled with micropatterning techniques, lipid bilayer platforms have allowed for high throughput assays capable of performing quantitative analysis at a high spatiotemporal resolution.
View Article and Find Full Text PDFDeveloping functional materials that directly integrate into miniaturized devices for sensing applications is essential for constructing the next-generation point-of-care system. Although crystalline structure materials such as metal organic frameworks are attractive materials exhibiting promising potential for biosensing, their integration into miniaturized devices is limited. Dopamine (DA) is a major neurotransmitter released by dopaminergic neurons and has huge implications in neurodegenerative diseases.
View Article and Find Full Text PDFBiomechanical inputs are ubiquitously present in biological systems and are known to regulate various cell functions. In particular, neural cell development is sensitive to mechanical regulation, as these cells reside in one of the softest microenvironments in the body. To fully characterize and comprehend how mechanical force modulates early neuronal processes, we prepared substrates functionalized with DNA probes displaying integrin ligands, including cRGD and laminin, to quantify integrin-mediated molecular tension during neurite initiation in primary cortical neurons.
View Article and Find Full Text PDFSingle-cell proteomics (SCP) reveals phenotypic heterogeneity by profiling individual cells, their biological states and functional outcomes upon signaling activation that can hardly be probed other omics characterizations. This has become appealing to researchers as it enables an overall more holistic view of biological details underlying cellular processes, disease onset and progression, as well as facilitates unique biomarker identification from individual cells. Microfluidic-based strategies have become methods of choice for single-cell analysis because they allow facile assay integrations, such as cell sorting, manipulation, and content analysis.
View Article and Find Full Text PDFBottom-up approaches in creating artificial cells that can mimic natural cells have significant implications for both basic research and translational application. Among various artificial cell models, liposome is one of the most sophisticated systems. By encapsulating proteins and associated biomolecules, they can functionally reconstitute foundational features of biological cells, such as the ability to divide, communicate, and undergo shape deformation.
View Article and Find Full Text PDFSoft tissue environments govern neuronal morphogenesis. However, the precise molecular mechanisms underlying chemotropism-directed axonal growth cone movement in extremely soft environments remain unclear. Here, we show that drebrin, a growth cone T-zone protein, modulates growth cone turning in response to brain-derived neurotrophic factor (BDNF) coated on a soft substrate.
View Article and Find Full Text PDFSpatially organized molecular interactions are fundamental features underlying many biochemical processes in cells. These spatially defined reactions are essential to ensure high signaling specificity and are indispensable for maintaining cell functions. The construction of synthetic cell models that can resemble such properties is thus important yet less investigated.
View Article and Find Full Text PDFDynamic extracellular environments profoundly affect the behavior and function of cells both biochemically and mechanically. Neurite initiation is the first step for neurons to establish intricate neuronal networks. How such a process is modulated by mechanical factors is not fully understood.
View Article and Find Full Text PDFSingle-cell proteomics can reveal cellular phenotypic heterogeneity and cell-specific functional networks underlying biological processes. Here, we present a streamlined workflow combining microfluidic chips for all-in-one proteomic sample preparation and data-independent acquisition (DIA) mass spectrometry (MS) for proteomic analysis down to the single-cell level. The proteomics chips enable multiplexed and automated cell isolation/counting/imaging and sample processing in a single device.
View Article and Find Full Text PDFDespite advancements of data-independent acquisition mass spectrometry (DIA-MS) to provide comprehensive and reproducible proteome profiling, its utility in very low-input samples is limited. Due to different proteome complexities and corresponding peptide ion abundances, the conventional LC-MS/MS acquisition and widely used large-scale DIA libraries may not be suitable for the micro-nanogram samples. In this study, we report a sample size-comparable library-based DIA approach to enhance the proteome coverage of low-input nanoscale samples (i.
View Article and Find Full Text PDFA highly stable framework of an organic-inorganic hybrid indium phosphate () was synthesized under hydro(solvo)thermal conditions and structurally characterized by single-crystal X-ray diffraction and solid-state NMR spectroscopy. This is the first example of a post-transition-metal phosphate incorporating tetradentate organic molecules. The In atoms in the inorganic layers are coordinated by imidazole rings of the 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene linkers to generate a new solid-state material.
View Article and Find Full Text PDFCells receive a wide range of dynamic signaling inputs during immune regulation, but how gene regulatory networks measure such dynamic inputs is not well understood. Here, we used microfluidic single-cell analysis and mathematical modeling to study how the NF-κB pathway responds to immune inputs that vary over time such as increasing, decreasing, or fluctuating cytokine signals. We found that NF-κB activity responded to the absolute difference in cytokine concentration and not to the concentration itself.
View Article and Find Full Text PDFThe supported lipid bilayer (SLB) is a powerful tool for studying dynamic cell-environment interactions and has been widely used for biosensing applications. Using a reusable microfluidic chip, we present here a strategy to fabricate highly multiplexed SLB and protein arrays for cell signaling research. This approach allows for the rapid patterning of hundreds of highly reproducible and size-tunable SLB arrays with distinct lipid composition and mobility.
View Article and Find Full Text PDFThe design principle of establishing an intracellular protein gradient for asymmetric cell division is a long-standing fundamental question. While the major molecular players and their interactions have been elucidated via genetic approaches, the diversity and redundancy of natural systems complicate the extraction of critical underlying features. Here, we take a synthetic cell biology approach to construct intracellular asymmetry and asymmetric division in Escherichia coli, in which division is normally symmetric.
View Article and Find Full Text PDFThe first example of a thio-functionalized zincophosphite material (NTOU-2S) incorporating the 2,5-thiophenedicarboxylate (TPDC) ligands was synthesized using a hydro(solvo)thermal method and structurally characterized by single-crystal X-ray diffraction. Interestingly, the perspective view of the crystal structure for NTOU-2S is similar to our previous report of NTOU-2 but the carboxylate organic ligands (TPDC for NTOU-2S; 1,4-benzenedicarboxylate, BDC, for NTOU-2) in both compounds adopt different types of bis-monodentate coordination models (the unusual cis bonding versus a trans linkage) to bridge the metal atoms of inorganic tubes in the formation of large-channel zincophosphite frameworks, resulting in structural and functional diversities. The thiophene-based compound also displayed higher thermal stability and removal ability for the softer Hg cations from water solutions than the performance of sulfur-free NTOU-2.
View Article and Find Full Text PDFEpithelial to mesenchymal transition (EMT) is integral for cells to acquire metastatic properties, and ample evidence links it to bioorganic framework of the tumor microenvironment (TME). Hydroxymethyl-functionalized 3,4-ethylenedioxythiophene polymer (PEDOT-OH) enables construction of diverse nanotopography size and morphologies and is therefore exploited to engineer organic artificial microenvironments bearing nanodots from 300 to 1000 nm in diameter to understand spatiotemporal EMT regulation by biophysical components of the TME. MCF-7 breast cancer cells are cultured on these artificial microenvironments, and temporal regulation of cellular morphology and EMT markers is investigated.
View Article and Find Full Text PDFSimultaneous measurement of proteins and mRNA in single cells enables quantitative understanding and modeling of cellular functions. Here, we present an automated microfluidic system for multi-parameter and ultra-sensitive protein/mRNA measurements in single cells. Our technology improves the sensitivity of digital proximity ligation assay by up to 55-fold, with a detection limit of 2277 proteins per cell and with detection efficiency of as few as 29 protein molecules.
View Article and Find Full Text PDFDynamical control of cellular microenvironments is highly desirable to study complex processes such as stem cell differentiation and immune signaling. We present an ultra-multiplexed microfluidic system for high-throughput single-cell analysis in precisely defined dynamic signaling environments. Our system delivers combinatorial and time-varying signals to 1500 independently programmable culture chambers in week-long live-cell experiments by performing nearly 10 pipetting steps, where single cells, two-dimensional (2D) populations, or 3D neurospheres are chemically stimulated and tracked.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2016
SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane.
View Article and Find Full Text PDF