A convenient and efficient procedure was developed for preparing 3,4-diaryl-substituted maleimides through the improved synthesized diaryl-substituted fumaronitrile. The synthesis of diphenyl-substituted fumaronitrile derivatives from phenylacetonitrile compounds was analyzed and improved. We found the stoichiometry of the sodium methoxide and the concentration of the starting material, phenylacetonitrile derivatives, were crucial for the high yield and easy purification of the products.
View Article and Find Full Text PDFChem Commun (Camb)
October 2003
Bright (maximum 10034 cd m(-2), 455 cd m(-2) at 20 mA cm(-2)) and efficient (maximum 2.4% at 4 mA cm(-2)) red (lambda(max)el 634-636 nm) organic light-emitting diodes employ arylamino-substituted fumaronitrile as the novel host emitter, which is readily prepared and easily purified.
View Article and Find Full Text PDFChem Commun (Camb)
February 2003
A new synthesis procedure has been developed for a series of maleimide-based fluorophores, exhibiting a large variation of emission spectra spanning the entire visible range.
View Article and Find Full Text PDFMolecular glass material (4-(5-(4-(diphenylamino)phenyl)-2-oxadiazolyl)phenyl)triphenylsilane (Ph(3)Si(PhTPAOXD)) was used as the blue light-emitting material in the fabrication of high-performance organic light-emitting diodes (OLEDs). In the optimization of performance, five types of OLEDs were constructed from Ph(3)Si(PhTPAOXD): device I, ITO/NPB/Ph(3)Si(PhTPAOXD)/Alq(3)/Mg:Ag, where NPB and Alq(3) are 1,4-bis(1-naphylphenylamino)biphenyl and tris(8-hydroxyquinoline)aluminum, respectively; device II, ITO/NPB/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag, where TPBI is 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene; device III, ITO/Ph(2)Si(Ph(NPA)(2))(2)/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag, where Ph(2)Si(Ph(NPA)(2))(2) is bis(3,5-bis(1-naphylphenylamino)phenyl)-diphenylsilane, a newly synthesized tetraphenylsilane-containing triarylamine as hole-transporting material; device IV, ITO/Ph(2)Si(Ph(NPA)(2))(2)/NPB/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag; device V, ITO/CuPc/NPB /Ph(3)Si(PhTPAOXD)/Alq(3)/LiF/Al, where CuPc is Cu(II) phthalocyanine. Device performances, including blue color purity, electroluminescence (EL) intensity, current density, and efficiency, vary drastically by changing the device thickness (100-600 A of the light-emitting layer) and materials for hole-transporting layer (NPB and/or Ph(2)Si(Ph(NPA)(2))(2)) or electron-transporting material (Alq(3) or TPBI).
View Article and Find Full Text PDF