Publications by authors named "Hsinwei Wu"

Background: Atypical teratoid rhabdoid tumor (AT/RT) occurs at a younger age and is associated with a worse prognosis than medulloblastoma; however, these two tumor entities are mostly indistinguishable on neuroimaging. The aim of our study was to differentiate AT/RT and medulloblastoma based on their clinical and MRI features to enhance treatment planning and outcome prediction.

Methods: From 2005-2021, we retrospectively enrolled 16 patients with histopathologically diagnosed AT/RT and 57 patients with medulloblastoma at our institute.

View Article and Find Full Text PDF

Spinal metastasis from malignant primary brain tumors (MPBTs) in pediatric patients is rare and often appears as enhancing lesions on MRI. However, some indolent enhancing spinal lesions (IESLs) resulting from previous treatment mimic metastasis on MRI, leading to unnecessary investigation and treatment. In 2005-2020, we retrospectively enrolled 12 pediatric/young patients with clinical impression of spinal metastasis and pathological diagnosis of their spinal lesions.

View Article and Find Full Text PDF

Using in situ X-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and density functional theory, we analyzed the surface core level shifts and surface structure during the initial growth of ABO perovskites on Ge (001) by atomic layer deposition, where A = Ba, Sr and B = Ti, Hf, Zr. We find that the initial dosing of the barium- or strontium-bis(triisopropylcyclopentadienyl) precursors on a clean Ge surface produces a surface phase that has the same chemical and structural properties as the 0.5-monolayer Ba Zintl layer formed when depositing Ba by molecular beam epitaxy.

View Article and Find Full Text PDF

Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix.

View Article and Find Full Text PDF