Publications by authors named "Hsinlin T Cheng"

Purpose: Orofacial Pain (OFP) affects 15% of the general population. OFP conditions can be myofascial, also known as temporomandibular disorders (TMDs) or neuropathic. The underlying pathophysiology in several chronic OFP conditions, is unknown.

View Article and Find Full Text PDF

Headache is a common neurological symptom of Coronavirus disease 2019 (COVID-19) patients. However, the prevalence, comorbidities, and ethnic susceptibilities of COVID-19-induced headaches are not well-defined. We performed a retrospective chart review of patients who tested positive for SARS-CoV2 by reverse transcriptase-polymerase chain reaction (RT-PCR) in March and April 2020 at Massachusetts General Hospital, Boston, Massachusetts, USA.

View Article and Find Full Text PDF

Purpose: Neurogenic inflammation is a major component of chronic neuropathic pain. Previously, we established the db/db mouse as an animal model of painful diabetic neuropathy (PDN) of type 2 diabetes. In the current study, we investigate the roles of interleukin (IL)-10, an anti-inflammatory cytokine, in the development of neurogenic inflammation and pain behavior in db/db mouse.

View Article and Find Full Text PDF

Painful neuropathy (PN) is a prevalent condition in patients with metabolic syndrome (MetS). However, the pathogenic mechanisms of metabolic syndrome-associated painful neuropathy (MetSPN) remain unclear. In the current study, high-fat-fed mice (HF mice) were used to study MetSPN.

View Article and Find Full Text PDF

Unlabelled: We examined changes in intraepidermal nerve fibers (IENFs) to differentiate patients with diabetic neuropathy (DN) and diabetic neuropathic pain (DN-P) from those with DN without pain (DN-NOP). Punch skin biopsies were collected from the proximal thigh (PT) and distal leg (DL) of normal subjects, patients with type 2 diabetes without evidence of DN (DM), or DN-P and DN-NOP patients. Protein gene product 9.

View Article and Find Full Text PDF

Background: Langerhans cells (LCs) are antigen-presenting dendritic cells located in the skin. It has been reported that LC activation is associated with painful diabetic neuropathy (PDN); however, the mechanism of LC activation is still unclear.

Methods: The db/db mouse, a rodent model of PDN, was used to study the roles of LCs in the development of PDN in type 2 diabetes.

View Article and Find Full Text PDF

A punch biopsy of the skin is commonly used to quantify intraepidermal nerve fiber densities (IENFD) for the diagnosis of peripheral polyneuropathy (1,2). At present, it is common practice to collect 3 mm skin biopsies from the distal leg (DL) and the proximal thigh (PT) for the evaluation of length-dependent polyneuropathies (3). However, due to the multidirectional nature of IENFs, it is challenging to examine overlapping nerve structures through the analysis of two-dimensional (2D) imaging.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy is a prevalent, disabling disorder. The most common manifestation is distal symmetrical polyneuropathy (DSP), but many patterns of nerve injury can occur. Currently, the only effective treatments are glucose control and pain management.

View Article and Find Full Text PDF

Activation of the neuronal-glial network in the spinal cord dorsal horn (SCDH) mediates various chronic painful conditions. We studied spinal neuronal-astrocyte signaling interactions involved in the maintenance of painful diabetic neuropathy (PDN) in type 2 diabetes. We used the db/db mouse, an animal model for PDN of type 2 diabetes, which develops mechanical allodynia from 6 to 12 wk of age.

View Article and Find Full Text PDF

Painful diabetic neuropathy (PDN) is a common, yet devastating complication of type 2 diabetes. At this time, there is no objective test for diagnosing PDN. In the current study, we measured the peptidergic intraepidermal nerve fiber densities (IENFD) from hind paws of the db/db mouse, an animal model for type 2 diabetes, during the period of mechanical allodynia from 6 to 12 weeks of age.

View Article and Find Full Text PDF

Background: Painful Diabetic Neuropathy (PDN) affects more than 25% of patients with type 2 diabetes; however, the pathogenesis remains unclear due to lack of knowledge of the molecular mechanisms leading to PDN. In our current study, we use an animal model of type 2 diabetes in order to understand the roles of p38 in PDN. Previously, we have demonstrated that the C57BLK db/db (db/db) mouse, a model of type 2 diabetes that carries the loss-of-function leptin receptor mutant, develops mechanical allodynia in the hind paws during the early stage (6-12 wk of age) of diabetes.

View Article and Find Full Text PDF

C57BLKS db/db (db/db) mice develop a neuropathy with features of human type 2 diabetic neuropathy. Here, we demonstrate that these mice develop transient mechanical allodynia at the early stage of diabetes. We hypothesized that nerve growth factor (NGF), which enhances the expression of key mediators of nociception (i.

View Article and Find Full Text PDF

Neuropathy is the most common and debilitating complication of diabetes and results in pain, decreased motility, and amputation. Diabetic neuropathy encompasses a variety of forms whose impact ranges from discomfort to death. Hyperglycemia induces oxidative stress in diabetic neurons and results in activation of multiple biochemical pathways.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is the most common diabetic complication and is the leading cause of diabetes-related hospital admissions and non-traumatic amputations. DPN is also associated with a poor quality of life and high economic costs for both type 1 and type 2 diabetic patients. An effective treatment for DPN, besides tight glycemic control, is not yet available.

View Article and Find Full Text PDF