High-entropy-alloy (HEA) nanocrystals hold immense potential for catalysis, offering virtually unlimited alloy combinations through the inclusion of at least five constituent elements in varying ratios. However, general and effective strategies for synthesizing libraries of HEA nanocrystals with controlled surface atomic structures remain scarce. In this study, a transferable strategy for developing a library of facet-controlled seed@HEA nanocrystals through seed-mediated growth is presented.
View Article and Find Full Text PDFTwo-dimensional (2D) materials promise advances in electronic devices beyond Moore's scaling law through extended functionality, such as non-monotonic dependence of device parameters on input parameters. However, the robustness and performance of effects like negative differential resistance (NDR) and anti-ambipolar behavior have been limited in scale and robustness by relying on atomic defects and complex heterojunctions. In this paper, we introduce a novel device concept that utilizes the quantum capacitance of junctions between 2D materials and molecular layers.
View Article and Find Full Text PDFQuantitative understanding of the chemisorption on single-atom catalysts (SACs) by their electronic properties is crucial for the catalyst design. However, the physical mechanism is still under debate. Here, the CO catalytic oxidation on single transition metal (i.
View Article and Find Full Text PDFSimulating the behavior of metal nanoparticles on supports is crucial for boosting their catalytic performance and various nanotechnology applications; however, such simulations are limited by the conflicts between accuracy and efficiency. Herein, we introduce a multiscale modeling strategy to unveil the morphology of Ru supported on pristine and N-doped graphene. Our multiscale modeling started with the electronic structures of a supported Ru single atom, revealing the strong metal-support interaction around pyridinic nitrogen sites.
View Article and Find Full Text PDFOne of the great advantages of organic-inorganic metal halides is that their structures and properties are highly tuneable and this is important when optimizing materials for photovoltaics or other optoelectronic devices. One of the most common and effective ways of tuning the electronic structure is through anion substitution. Here, we report the inclusion of bromine into the layered perovskite [HN(CH)NH]PbBr to form [HN(CH)NH]PbBr·Br, which contains molecular bromine (Br) intercalated between the layers of corner-sharing PbBr octahedra.
View Article and Find Full Text PDFN dissociative adsorption is commonly the rate-determining step in thermal ammonia synthesis. Herein, we performed density functional theory (DFT) calculations to understand the N dissociation mechanism on models of unsupported Ru(0001) terraces, Ru B5 sites, and polar MgO(111)-supported Ru cluster mimicking a B5 site geometry, denoted (Ru(B5-like)/MgO(111)). The activation energy of N dissociative adsorption on the Ru(B5-like)/MgO(111) model ( = 0.
View Article and Find Full Text PDFAmmonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction.
View Article and Find Full Text PDFSurface diffusion is intimately correlated with crystal orientation and surface structure. Fast surface diffusion accelerates phase transformation and structural evolution of materials. Here, through in situ transmission electron microscopy observation, we show that a copper nanowire with dense nanoscale coherent twin-boundary (CTB) defects evolves into a zigzag configuration under electric-current driven surface diffusion.
View Article and Find Full Text PDFThe structural, energetic and electronic structure properties of stoichiometric and nonstoichiometric slab models of bare MgO(111) and Ru/MgO(111) with different coverages of 1 monolayer (ML), 1/4 ML and 1/16 ML have been investigated using spin-polarized density functional theory. Calculated results show that the structural, energetic properties and charge transfer of both bare MgO(111) and Ru/MgO(111) are independent of the stoichiometric and nonstoichiometric models. In contrast, their density of state (DOS) profiles demonstrate metal and half-metal characters for the stoichiometric and nonstoichiometric bare MgO(111) surfaces, respectively.
View Article and Find Full Text PDFHigh-performance p-type thin-film transistors (pTFTs) are crucial for realizing low-power display-on-panel and monolithic three-dimensional integrated circuits. Unfortunately, it is difficult to achieve a high hole mobility of greater than 10 cm/V·s, even for SnO TFTs with a unique single-hole band and a small hole effective mass. In this paper, we demonstrate a high-performance GeSn pTFT with a high field-effect hole mobility (μ), of 41.
View Article and Find Full Text PDFSingle-atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single-atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical-mediated pathway like most of the reported nanozymes.
View Article and Find Full Text PDFHydrogen spillover is the phenomenon where a hydrogen atom, generated from the dissociative chemisorption of dihydrogen on the surface of a metal species, migrates from the metal to the catalytic support. This phenomenon is regarded as a promising avenue for hydrogen storage, yet the atomic mechanism for how the hydrogen atom can be transferred to the support has remained controversial for decades. As a result, the development of catalytic support for such a purpose is only limited to typical reducible oxide materials.
View Article and Find Full Text PDFIn this study, electronic structure calculations and Bader charge analysis have been completed on the inverse, intermediate, and normal spinel structures of NiCoO in both primitive and conventional cells, using density functional theory with Hubbard correction. Three spinel structures have been computed in the primitive cell, where the fully inverse spinel, 50% intermediate spinel, and normal spinel can be acquired by swapping Ni and Co atoms on tetrahedral and octahedral sites. Furthermore, NiCoO with different degrees of inversion in the conventional cells was also investigated, along with their doping energies.
View Article and Find Full Text PDFIn this paper, a modified Cyclotriveratrylene was synthesized and linked to a branched Polyethylenimine, and this unique polymeric material was subsequently examined as a potential supramolecular carrier for Doxorubicin. Spectroscopic analysis in different solvents had shown that Doxorubicin was coordinated within the hollow-shaped unit of the armed Cyclotriveratrylene, and the nature of the host-guest complex revealed intrinsic Van der Waals interactions and hydrogen bonding between the host and guest. The strongest interaction was detected in water because of the hydrophobic effect shared between the aromatic groups of the Doxorubicin and Cyclotriveratrylene unit.
View Article and Find Full Text PDFThe free-standing Au cluster has a unique tetrahedral shape and a large HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) gap of around 1.8 electron volts. The "magic" Au has been intensively used as a model system for understanding the catalytic and optical properties of gold nanoclusters.
View Article and Find Full Text PDFIn this report, the substitution of the oxygen group (=O) of Tetraphenylcyclopentadienone with =CR group (R = methyl ester or nitrile) was found to have tuned the electro-optical properties of the molecule. Although both groups are electrons withdrawing in nature, their absorption from UV-vis spectra analysis was observed to have been blue-shifted by methyl ester substitution and red-shifted by nitrile substitution. Interestingly, these substitutions helped to enhance the overall intensity of emission, especially in the context of methyl ester substitution whereby the emission was significantly boosted at higher concentrations due to hypothesized restrictions of intramolecular motions.
View Article and Find Full Text PDFScanning tunneling microscopy and spectroscopy experiments under ultrahigh vacuum and low-temperature conditions have been performed on water-intercalated graphene on Pt(111). We find that the confined water layer, with a thickness around 0.35 nm, induces a strong hole doping in graphene, i.
View Article and Find Full Text PDFStable and low-cost carbon dots (C-dots) were prepared from polyethylenimine (PEI) by a hydrothermal method. It is found that the fluorescence of the C-dots (best measured at excitation/emission wavelengths of 365/473 nm) is quenched by selective oxidation of surface PEI by periodate but recovers in the presence of uric acid (UA). It is assumed that this is due to the selective reduction of the nitrone groups to hydroxylamine groups by UA.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2018
Biomass refers to plant-based materials that are not used for food or feed. As an energy source, lignocellulosic biomass (lignin, cellulose and hemicellulose) can be converted into various forms of biofuel using thermal, chemical and biochemical methods. Chemical conversion implies the use of solid catalysts, usually oxide materials.
View Article and Find Full Text PDFA ternary metallic CuPdPt nanocatalyst (NC) is synthesized using a wet chemical reduction method, which is sequentially designed, in the presence of acid treated carbon nanotubes. This NC is a nanocrystal with a configuration of a Cu@Pd core and atomic Pt clusters (∼9 wt%) on the top (Cu@Pd/Pt). A residual current of 92.
View Article and Find Full Text PDF