Publications by authors named "Hsin-Wei Liao"

LTX-315 is an oncolytic peptide that has antitumor efficacy in mice grafted with various tumor cell lines and is currently being tested in phase II clinical trials. Here we aimed to further evaluate LTX-315 in conditional genetic mouse models of cancer that typically resist current treatment options and to better understand the drug's mode of action . We report LTX-315 mediates profound antitumor effects against and -driven melanoma and delays the progression of and driven soft tissue sarcoma in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Methylation of specific residues in the EGFR extracellular domain by PRMT1 enhances the receptor's activation by traditional ligands like EGF and TGFα.
  • RNase 5 has been discovered as a new ligand for EGFR, but its relationship with EGFR methylation and activation isn't fully understood.
  • The study revealed that RNase 5 activates EGFR and boosts colorectal cancer cell growth, and that PRMT1's role in EGFR methylation is essential for this activation, indicating RNase 5 may also impact cetuximab treatment effectiveness in colorectal cancer.
View Article and Find Full Text PDF

Enriched PD-L1 expression in cancer stem-like cells (CSCs) contributes to CSC immune evasion. However, the mechanisms underlying PD-L1 enrichment in CSCs remain unclear. Here, we demonstrate that epithelial-mesenchymal transition (EMT) enriches PD-L1 in CSCs by the EMT/β-catenin/STT3/PD-L1 signaling axis, in which EMT transcriptionally induces N-glycosyltransferase STT3 through β-catenin, and subsequent STT3-dependent PD-L1 N-glycosylation stabilizes and upregulates PD-L1.

View Article and Find Full Text PDF

Arginine methylation of the epidermal growth factor receptor (meEGFR) increases the binding affinity of EGFR ligands and is reported to have a role in predicting response to anti-EGFR agents. This study investigated the predictive impact of meEGFR in metastatic colorectal cancer (mCRC) patients treated with anti-EGFR agents. Two patient cohorts were evaluated.

View Article and Find Full Text PDF

Bone marrow-derived myeloid cells can accumulate within tumors and foster cancer outgrowth. Local immune-neoplastic interactions have been intensively investigated, but the contribution of the systemic host environment to tumor growth remains poorly understood. Here, we show in mice and cancer patients ( = 70) that lung adenocarcinomas increase bone stromal activity in the absence of bone metastasis.

View Article and Find Full Text PDF

The host microenvironment plays a prominent role in tumor growth, angiogenesis, invasion, metastasis, and response to therapy. Orthotopic tumor model mimics the natural environment of tumor development and provides an effective approach to investigate tumor pathophysiology and develop therapeutic strategies. This protocol describes the technique involving injection of colorectal cancer cell suspension into the intestinal wall of mice to establish an orthotopic colorectal tumor model.

View Article and Find Full Text PDF

Background: Epidermal growth factor receptor (EGFR) is often overexpressed in triple-negative breast cancer (TNBC). However, clinical studies have shown that therapies against EGFR are not effective in patients with TNBC. Recently, it has been reported that arginine 198/200 in EGFR extracellular domain is methylated by PRMT1 and that the methylation confers resistance to EGFR monoclonal antibody cetuximab in colorectal cancer cells.

View Article and Find Full Text PDF

Successful antitumor immunity is thought to require T cell entry into tumors, though mechanisms regulating this process remain unclear. In this issue of Cancer Cell, Spranger et al. indicate that chemokines produced by intratumoral Batf3 dendritic cells are critical for effector T cell recruitment.

View Article and Find Full Text PDF

The oncogenic transcription factor Gli1 is a critical effector in the Hedgehog (Hh) pathway, which is necessary for the development and progression of pancreatic ductal adenocarcinoma (PDAC). Although TGFβ and K-Ras are known regulators of Gli1 gene transcription in this setting, it is not understood how Gli1 functional activity is regulated. Here, we report the identification of Gli1 as a substrate for the protein arginine N-methyltransferase PRMT1 in PDAC.

View Article and Find Full Text PDF

During the process of tumorigenesis, inactivation of tumor suppressors is a critical step. EZH2, a histone methyltransferase, promotes cell growth and migration through catalyzing trimethylation of histone H3 at Lys 27 (H3K27me3) and plays an important role in tumorigenesis. Its expression can be controlled by phosphorylation.

View Article and Find Full Text PDF

Pyruvate kinase is a key enzyme in the glycolytic pathway that converts phosphoenolpyruvate to pyruvate, and the M2 isoform of pyruvate kinase (PKM2) is associated with cancer. PKM2 has been reported to function independently of its pyruvate kinase activity, which is crucial for cancer cell proliferation. Moreover, there is growing evidence indicating that dimeric PKM2 is released from tumor cells into the circulation of cancer patients.

View Article and Find Full Text PDF

Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth.

View Article and Find Full Text PDF

Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks.

View Article and Find Full Text PDF

Posttranslational modifications of histones play fundamental roles in many biological functions. Specifically, histone H4-K20 methylation is critical for DNA synthesis and repair. However, little is known about how these functions are regulated by the upstream stimuli.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) can undergo post-translational modifications, including phosphorylation, glycosylation and ubiquitylation, leading to diverse physiological consequences and modulation of its biological activity. There is increasing evidence that methylation may parallel other post-translational modifications in the regulation of various biological processes. It is still not known, however, whether EGFR is regulated by this post-translational event.

View Article and Find Full Text PDF

In this paper, we report on the formation and rupture of Ag nanofilament on planar Ag/TiO2/Pt cells using visual observation. During the forming process, the filament tends to stay very thin. Specifically, it is so thin that it breaks up into a chain of nanospheres (according to Rayleigh instability) right after the formation has been completed.

View Article and Find Full Text PDF

Epstein-Barr Virus (EBV) DNase (BGLF5) is an alkaline nuclease and has been suggested to be important in the viral life cycle. However, its effect on host cells remains unknown. Serological and histopathological studies implied that EBV DNase seems to be correlated with carcinogenesis.

View Article and Find Full Text PDF

Klebsiella pneumoniae type 3 fimbriae are encoded by mrkABCDF genes which produce the major pilin subunit MrkA, chaperone MrkB, outer membrane usher MrkC, adhesin MrkD and MrkF of unknown function, respectively. RT-PCR analysis demonstrated that the mrkF gene is contained within the mrk operon. Deletion of mrkF in K.

View Article and Find Full Text PDF