We have utilized soft lithography techniques to create three-dimensional arrays of blood microchannels and gas pathways in poly(dimethylsiloxane) (PDMS) that approach the microvascular scale of the natural lung. The blood microchannels were lined with endothelial cells in an effort to provide a non-thrombogenic surface that might ultimately reduce the need for systemic anticoagulation. A novel design and fabrication method were developed to create prototype modules for gas permeance and cell culture testing.
View Article and Find Full Text PDFArtificial superhydrophobic surfaces are typically fabricated by tuning the surface roughness of intrinsically hydrophobic surfaces. We report here the design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrogen-terminated Si surfaces with an intrinsic water contact angle of approximately 74 degrees . The micro-textures consist of overhang structures with well-defined geometries fabricated by microfabrication technologies, which provide positions to support the liquid and prevent the liquid from entering into the indents between the micro-textures.
View Article and Find Full Text PDF