Publications by authors named "Hsin-An Ko"

The major biological methyl donor, -adenosylmethionine (adoMet) synthesis occurs mainly in the liver. Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are two key enzymes involved in the functional implications of that variation. We collected 42 RNA-seq data from paired hepatocellular carcinoma (HCC) and its adjacent normal liver tissue from the Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

(1) Background: Antifolate methotrexate (MTX) is the most common disease-modifying antirheumatic drug (DMARD) for treating human rheumatoid arthritis (RA). The mitochondrial-produced formate is essential for folate-mediated one carbon (1C) metabolism. The impacts of MTX on formate homeostasis in unknown, and rigorously controlled kinetic studies can greatly help in this regard.

View Article and Find Full Text PDF

Folate-mediated one-carbon (1C) metabolism is a major target of many therapies in human diseases. Studies have focused on the metabolism of serine 3-carbon as it serves as a major source for 1C units. The serine 3-carbon enters the mitochondria transferred by folate cofactors and eventually converted to formate and serves as a major building block for cytosolic 1C metabolism.

View Article and Find Full Text PDF

The striatal complex of basal ganglia comprises two functionally distinct districts. The dorsal district controls motor and cognitive functions. The ventral district regulates the limbic function of motivation, reward, and emotion.

View Article and Find Full Text PDF

Currently, no guidelines are established for pharmacogenomic testing involving folate metabolic genes in long-term disease-modifying antirheumatic drugs' (DMARD) therapies. We carefully investigated how common genetic variations in methylenetetrahydrofolate reductase () influence cellular metabolic kinetics in response to methotrexate (MTX). Two distinct cell models: HepG2 with stabilized inhibition using shRNA delivered by a Lentiviral vector; and Epstein-Barr virus transformed human lymphoblasts expressing polymorphic allele 677C and 677T were used.

View Article and Find Full Text PDF

Folate-mediated one-carbon metabolism is an important therapeutic target of human diseases. We extensively investigated how gene-nutrient interactions may modulate human cancer risk in 2 major folate metabolic genes, MTHFR and GNMT. The biochemical impacts of MTHFR and GNMT on methyl group supply, global DNA methylation, nucleotide biosynthesis, DNA damage, and partitioning of the folate dependent 1-carbon group were carefully studied.

View Article and Find Full Text PDF

Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors.

View Article and Find Full Text PDF

The zinc finger-containing gene Nolz-1/Zfp503 is a developmentally regulated striatum-enriched gene. In the present study, we characterized the cell type-selective expression pattern of Nolz-1 protein in the developing mouse striatum. Nolz-1 immunoreactivity was present in Isl-1-positive ventral LGE (vLGE, striatal primordia), but absent in Pax6-positive dorsal LGE (dLGE, non-striatal primordia).

View Article and Find Full Text PDF

Diabetic cardiomyopathy has been shown to promote hypertrophy, leading to heart failure. Recent studies have reported a correlation between diabetic cardiomyopathy and oxidative stress, suggesting that the accumulation of advanced glycation end products (AGEs) induces the production of reactive oxygen species (ROS). In a clinical setting, AGEs have been shown to increase the risk of cardiovascular disease; however, the relationship between AGEs and cardiac hypertrophy remains unclear.

View Article and Find Full Text PDF