The antibody response to the envelope (E) glycoprotein of dengue virus (DENV) is known to play a critical role in both protection from and enhancement of disease, especially after primary infection. However, the relative amounts of homologous and heterologous anti-E antibodies and their epitopes remain unclear. In this study, we examined the antibody responses to E protein as well as to precursor membrane (PrM), capsid, and nonstructural protein 1 (NS1) of four serotypes of DENV by Western blot analysis of DENV serotype 2-infected patients with different disease severity and immune status during an outbreak in southern Taiwan in 2002.
View Article and Find Full Text PDFWhile virus-like particles (VLPs) containing subgenomic replicons, which can transduce replicons into target cells efficiently for studying viral replication and vectors of gene therapy and vaccine, have been established for several flaviviruses, none has been reported for the four serotypes of dengue virus, the causal agent of the most important arboviral diseases in this century. In this study, we successfully established a cell line stably expressing the precursor membrane/envelope (PrM/E) proteins of dengue virus type 2 (DENV2), which can package a DENV2 replicon with deletion of PrM/E genes and produce single-round infectious VLPs. Moreover, it can package a similar replicon of different serotype, dengue virus type 4, and produce infectious chimeric VLPs.
View Article and Find Full Text PDFIn this study, we successfully established retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope (PrM/E) proteins of each of the four serotypes of dengue viruses, which caused the most important arboviral diseases in this century. Co-sedimentation of the dengue E protein and HIV-1 core proteins by sucrose gradient analysis of the pseudotype reporter virus of dengue virus type 2, D2(HIVluc), and detection of HIV-1 core proteins by immunoprecipitation with anti-E monoclonal antibody suggested that dengue viral proteins were incorporated into the pseudotype viral particles. The infectivity in target cells, as assessed by the luciferase activity, can be inhibited by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry.
View Article and Find Full Text PDFThe severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is thought to be transmitted primarily through dispersal of droplets, but little is known about the load of SARS-CoV in oral droplets. We examined oral specimens, including throat wash and saliva, and found large amounts of SARS-CoV RNA in both throat wash (9.58 x 10(2) to 5.
View Article and Find Full Text PDFSequence alignment of human herpesvirus DNases revealed that they share several conserved regions. One of these, the conserved motif D203..
View Article and Find Full Text PDF