Additives play a pivotal role in enhancing the efficiency of perovskite solar cells (PSCs), and carefully designed additives contribute to major breakthroughs in device performance. In this study, a series of novel A-π-A-type porphyrin derivatives-PPH-1, PPH-2, and PPF-1-are synthesized, each incorporating pyridyl groups, specifically engineered to function as passivation agents for PSCs. The electron-withdrawing properties of fluorine in PPF-1 increase the molecular polarity, thereby strengthening its interaction with the perovskite and enhancing the passivation efficacy.
View Article and Find Full Text PDFPrehosp Emerg Care
November 2024
Objectives: The quality of prehospital resuscitation provided by emergency medical technicians (EMTs) is essential to ensure better outcomes following out-of-hospital cardiac arrests (OHCA). We assessed the quality of prehospital resuscitation by recording time to key prehospital interventions using EMT-worn video devices and investigated its association with outcomes of patients with OHCA.
Methods: This retrospective, cross-sectional study included cases of non-traumatic OHCA in adults treated by emergency medical services (EMS) in Hsinchu City, Taiwan, during 2022 and 2023.
Adv Sci (Weinh)
September 2024
Lately, carbazole-based self-assembled monolayers (SAMs) are widely employed as effective hole-selective layers (HSLs) in inverted perovskite solar cells (PSCs). Nevertheless, these SAMs tend to aggregate in solvents due to their amphiphilic nature, hindering the formation of a monolayer on the ITO substrate and impeding effective passivation of deep defects in the perovskites. In this study, a series of new SAMs including DPA-B-PY, CBZ-B-PY, POZ-B-PY, POZ-PY, POZ-T-PY, and POZ-BT-PY are synthesized, which are employed as interfacial repairers and coated atop CNph SAM to form a robust CNph SAM@pseudo-planar monolayer as HSL in efficient inverted PSCs.
View Article and Find Full Text PDFSelf-assembled monolayers (SAMs) offer the advantage of facile interfacial modification, leading to significant improvements in device performance. In this study, we report the design and synthesis of a new series of carboxylic acid-functionalized porphyrin derivatives, namely AC-1, AC-3, and AC-5, and present, for the first time, a strategy to exploit the large π-moiety of porphyrins as a backbone for interfacing the indium tin oxide (ITO) electrode and perovskite active layer in an inverted perovskite solar cell (PSC) configuration. The electron-rich nature of porphyrins facilitates hole transfer and the formation of SAMs, resulting in a dense surface that minimizes defects.
View Article and Find Full Text PDFJACS Au
May 2022
Inverted perovskite solar cells (PSCs) have attracted intense attention because of their insignificant hysteresis and low-temperature fabrication process. However, the efficiencies of inverted PSCs are still inferior to those of commercialized silicon solar cells. Also, the poor stability of PSCs is one of the major impedances to commercialization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2021
Efficient control of the perovskite crystallization and passivation of the defects at the surface and grain boundaries of perovskite films have turned into the most important strategies to restrain charge recombination toward high-performance and long-term stability of perovskite solar cells (PSCs). In this paper, we employed a small amount of natural vitamin B (carnitine) with dual functional groups in the MAPbI precursor solution to simultaneously passivate the positive- and negative-charged ionic defects, which would be beneficial for charge transport in the PSCs. In addition, such methodology can efficiently ameliorate crystallinity with texture, better film morphology, high surface coverage, and longer charge carrier lifetime, as well as induce preferable energy level alignment.
View Article and Find Full Text PDFIn this study, nanopiezoelectric devices based on ZnO nanorod array/conducting polymers are fabricated for wearable power generation application. To replace the inorganic rigid indium-tin oxide (ITO) conducting coating commonly used in the nanogenerator devices, a series of flexible polyaniline-based conducting copolymers underlying the perpendicularly-oriented ZnO nanorod arrays has been synthesized with improved electric conductivity by the copolymerization of aniline and 3,4-ethylenedioxythiophene (EDOT) monomers in order to optimize the piezoelectric current collection efficiency of the devices. It is found that significantly higher conductivity can be obtained by small addition of EDOT monomer into aniline monomer solution using an in-situ oxidative polymerization method for the synthesis of the copolymer coatings.
View Article and Find Full Text PDFA series of tailor-made highly efficient and near-infrared (NIR) porphyrin-based acceptors is designed and synthesized for fullerene-free bulk-heterojunction (BHJ) organic solar cells. Constructing BHJ active layers using a PTB7-Th donor and porphyrin acceptors (P-), which have complementary absorption, accomplishes panchromatic photon-to-current conversion from 300 to 950 nm. Our study shows that side chains of the porphyrin acceptors fairly influence the molecular ordering and nanomorphology of the BHJ active layers.
View Article and Find Full Text PDFSupported lipid bilayers (SLBs) have been widely used to provide native environments for membrane protein studies. In this study, we utilized graphene field-effect transistors (GFETs) coated with a fluid SLB to perform label-free detection of membrane-associated ligand-receptor interactions in their native lipid bilayer environment. It is known that the analyte-binding event needs to occur within the Debye length for it to be significantly sensed by an FET sensor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
Stimuli-responsive polymers are capable of responding to external stimuli and therefore have been widely used for sensing. However, such applications are often based on naïve designs and cannot achieve the desired performance. In this study, we created a micro thermosensor with temperature-sensitive poly( N-isopropylacrylamide) (PNIPAM) hydrogel and temperature-insensitive poly(ethylene glycol) diacrylate (PEGDA) hydrogel using stop-flow lithography.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2019
Biocompatible and highly porous network hydrogel scaffolds were fabricated for the development of artificial cornea (AC) periphery/skirt that could be used to enhance the long-term retention of the implants. In this study, a series of hydrogel scaffolds for this application was fabricated from the photo-polymerization of a mixture of poly(ethylene glycol) (PEG)- and poloxamer (P407)-based macromer solutions in dichloromethane in which solvent-induced phase separation (SIPS) arose to form scaffolds with macroporous structure and high water content. The overall porosity ranging from 20% to 75% and open/closed pore structure of the hydrogel scaffolds could be finely tuned by varying the ratio of P407/PEG in the macromer solution and solvent type.
View Article and Find Full Text PDFThree novel donor-acceptor alternating polymers containing ladder-type pentacyclic heteroacenes (PBo, PBi, and PT) are synthesized, characterized, and further applied to organic field effect transistors (OFETs) and polymer solar cells. Significant aspects of quinoidal characters, electrochemical properties, optical absorption, frontier orbitals, backbone coplanarity, molecular orientation, charge carrier mobilities, morphology discrepancies, and the corresponding device performances are notably different with various heteroarenes. PT exhibits a stronger quinoidal mesomeric structure, linear and coplanar conformation, smooth surface morphology, and better bimodal crystalline structures, which is beneficial to extend the π-conjugation and promotes charge transport via 3-D transport pathways and in consequence improves overall device performances.
View Article and Find Full Text PDFThe room-temperature, aqueous-phase synthesis of iron-oxide nanoparticles (IO NPs) with glutathione (GSH) is reported. The simple, one-step reduction involves GSH as a capping agent and tetrakis(hydroxymethyl)phosphonium chloride (THPC) as the reducing agent; GSH is an anti-oxidant that is abundant in the human body while THPC is commonly used in the synthesis of noble-metal clusters. Due to their low magnetization and good water-dispersibility, the resulting GSH-IO NPs, which are 3.
View Article and Find Full Text PDFBiomicrofluidics
January 2014
Recently, we have reported the experimental results of DNA stretching by flow field in three microchannels (C. H. Lee and C.
View Article and Find Full Text PDFWe examined the performance of three microfluidic devices for stretching DNA. The first device is a microchannel with a contraction, and the remaining two are the modifications to the first. The modified designs were made with the help of computer simulations [C.
View Article and Find Full Text PDFA facile and versatile tool is reported that uses a photodefinable polymer, poly(4-benzoyl-p-xylylene-co-p-xylylene) to immobilize antifouling materials, such as poly(ethylene glycol), poly(ethylene glycol) methyl ether methacrylate, dextran, and ethanolamine. This immobilization process requires the polymer's photoactivated carbonyl groups, which can facilitate light-induced molecular crosslinking and can rapidly react via insertion into CH or NH bonds upon photo-illumination at 365 nm. Importantly, the process does not require additional functional groups on the antifouling materials.
View Article and Find Full Text PDFA novel T1 agent, antiferromagnetic α-iron oxide-hydroxide (α-FeOOH) nanocolloids with a diameter of 2-3 nm, has been successfully prepared. These nanocolloids, together with a post synthetic strategy performed in mesoporous silica, are a great improvement over the low T1-weighted contrast common in traditional magnetic silica nanocomposites. The intrinsic antiferromagnetic goethite (α-FeOOH) shows very low magnetization (M(z)) of 0.
View Article and Find Full Text PDFThe tri-functional coating synthesized via CVD copolymerization is comprised of distinguished anchoring sites of acetylene, maleimide, and ketone that can synergically undergo specific conjugation reactions to render surfaces with distinct biological functions, simultaneously. In addition, these tri-functional coatings can be fabricated in a micro-structured fashion on non-conventional surfaces.
View Article and Find Full Text PDFFunctional human insulin-Au nanodots (NDs) are synthesized for the in vivo imaging of insulin metabolism. Benefiting from its efficient red to near infrared fluorescence, deep tissue subcellular uptake of insulin-Au NDs can be clearly resolved through a least-invasive harmonic generation and two-photon fluorescence (TPF) microscope. In vivo investigations on mice ear and ex vivo assays on human fat tissues conclude that cells with rich insulin receptors have higher uptake of administrated insulin.
View Article and Find Full Text PDFPoly(4-benzoyl-p-xylylene-co-p-xylylene), a biologically compatible photoreactive polymer belonging to the parylene family, can be deposited using a chemical vapor deposition (CVD) polymerization process on a wide range of substrates. This study discovered that the solvent stability of poly(4-benzoyl-p-xylylene-co-p-xylylene) in acetone is significantly increased when exposed to approximately 365 nm of UV irradiation, because of the cross-linking of benzophenone side chains with adjacent molecules. This discovery makes the photodefinable polymer a powerful tool for use as a negative photoresist for surface microstructuring and biointerface engineering purposes.
View Article and Find Full Text PDFWe have used Brownian dynamics-finite element method to examine two conformational preconditioning approaches for improving DNA stretching in a microcontraction for the purpose of direct gene analysis. The newly proposed "pre-stretching" strategy is found to significantly improve the degree of DNA extension at the exit of the contraction. On the other hand, applying an oscillating extensional field to DNA yields no preconditioning effect.
View Article and Find Full Text PDFWe have used Brownian dynamics-finite element method (BD-FEM) to guide the optimization of a microfluidic device designed to stretch DNA for gene mapping. The original design was proposed in our previous study [C. C.
View Article and Find Full Text PDFA record high PCE of up to 3.2% demonstrates that the efficiency of hybrid solar cells (HSCs) can be boosted by utilizing a unique mono-aniline end group of PSBTBT-NH(2) as a strong anchor to attach to CdTe nanocrystal surfaces and by simultaneously exploiting benzene-1,3-dithiol solvent-vapor annealing to improve the charge separation at the donor/acceptor interface, which leads to efficient charge transportation in the HSCs.
View Article and Find Full Text PDFOne-dimensional nanostructures containing heterojunctions by conjugated polymers, such as nanowires, are expected to greatly facilitate efficient charge transfer in bulk-heterojunction (BHJ) solar cells. Thus, a combined theoretical and experimental approach is pursued to explore spontaneous nanowire formation. A dissipative particle dynamics simulation is first performed to study the morphologies formed by rodlike polymers with various side-chain structures.
View Article and Find Full Text PDF