Publications by authors named "Hsiao-Lan Liang"

Selenocystine (SeC) has been identified as a novel compound with broad-spectrum anticancer activity. However, the effects of SeC on modifying DNA repair mechanism were less addressed. In this study, we demonstrated that SeC selectively induced cytotoxicity and genotoxicity against HepG2 hepatoma cell line.

View Article and Find Full Text PDF

Purpose: Proximal contact loss (PCL) between implant-supported fixed dental prostheses (FDPs) and adjacent teeth has been reported as a common complication of implant therapy. The prevalence of PCL and its potential risk factors have been extensively studied. However, few studies have discussed the recurrent PCL after intervention to restore the proximal contacts.

View Article and Find Full Text PDF

Transcription factors and microRNAs (miRNAs) are two important classes of trans-regulators in differential gene expression. Transcription factors occupy cis-regulatory motifs in DNA to activate or repress gene transcription, whereas miRNAs specifically pair with seed sites in target mRNAs to trigger mRNA decay or inhibit translation. Dynamic spatiotemporal expression patterns of transcription factors and miRNAs during development point to their stage- and tissue-specific functions.

View Article and Find Full Text PDF

Pattern formation in the developing embryo relies on key regulatory molecules, many of which are distributed in concentration gradients. For example, a gradient of BMP specifies cell fates along the dorsoventral axis in species ranging from flies to mammals. In Drosophila, a gradient of the BMP molecule Dpp gives rise to nested domains of target gene expression in the dorsal region of the embryo; however, the mechanisms underlying the differential response are not well understood, partly owing to an insufficient number of well-studied targets.

View Article and Find Full Text PDF

The early Drosophila embryo is patterned by graded distributions of maternal transcription factors. Recent studies revealed that pattern formation by these graded signals depends on uniformly expressed transcriptional activators, such as Zelda. Removal of Zelda influences both the timing and the spatial expression domains for most of the genes controlled by maternal gradients.

View Article and Find Full Text PDF

In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG and related sequences present in the enhancers of many early-activated genes in Drosophila, hinted at a mechanism for how batteries of genes could be simultaneously activated. Here we use genome-wide binding and expression assays to identify Zld target genes in the early embryo with the goal of unraveling the gene circuitry regulated by Zld.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research highlights the role of microRNAs and the protein Smaug in degrading maternal RNAs, but the specific transcription factors that activate the zygotic genome are still unclear.
  • The zinc-finger protein Zelda (Zld) has been identified as a key factor that binds to specific DNA motifs and activates early zygotic genes, suggesting it plays a crucial role in cellular development and possibly in regulating maternal RNA breakdown during the transition.
View Article and Find Full Text PDF

Several RNA interference (RNAi)-based functional genomic projects have been performed in Caenorhabditis elegans to identify genes required during embryogenesis. These studies have demonstrated that the ovary is enriched for transcripts essential for the first cell divisions. However, comparing RNAi results suggests that many genes involved in embryogenesis have yet to be identified, especially those eliciting partially penetrant phenotypes.

View Article and Find Full Text PDF