Precise control of the molecular arrangements at the interface between the electron donor and acceptor in mixed bulk heterojunctions (BHJs) remains challenging, despite the correlation between structural characteristics and efficiency in organic photovoltaics (OPVs). This study reveals that the substitution patterns of linear and branched alkyl side chains on electron-donating/-accepting alternating copolymers can control the positions of an acceptor molecule (C ) around the π-conjugated main chains in mixed BHJs. Two-dimensional solid-state NMR demonstrates a marked difference in the location of C in the blend films.
View Article and Find Full Text PDFThe relative stability and melting of cubic boron nitride (c-BN) nanoparticles of varying shapes and sizes are studied using classical molecular dynamics (MD) simulation. Focusing on the melting of octahedral c-BN nanoparticles, which consist solely of the most stable {111} facets, decomposition is observed to occur during melting, along with the formation of phase segregated boron clusters inside the c-BN nanoparticles, concurrent with vaporization of surface nitrogen atoms. To assess this MD prediction, a laser-heating experiment of c-BN powders is conducted, manifesting boron clusters for the post-treated powders.
View Article and Find Full Text PDF