The poor intracellular uptake and non-specific binding of anticancer drugs into cancer cells are the bottlenecks in cancer therapy. Nanocarrier platforms provide the opportunities to improve the drug efficacy. Here we show a carbon-based nanomaterial nanodiamond (ND) that carried paclitaxel (PTX), a microtubule inhibitor, and cetuximab (Cet), a specific monoclonal antibody against epidermal growth factor receptor (EGFR), inducing mitotic catastrophe and tumor inhibition in human colorectal cancer (CRC).
View Article and Find Full Text PDFZAC, an encoding gene mapped at chromosome 6q24-q25 within PSORS1, was previously found over-expressed in the lower compartment of the hyperplastic epidermis in psoriatic lesions. Cytokines produced in the inflammatory dermatoses may drive AP-1 transcription factor to induce responsive gene expressions. We demonstrated that mZac1 can enhance AP-1-responsive S100A7 expression of which the encoding gene was located in PSORS4 with HaCaT keratinocytes.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
June 2016
In this study, robust biological filters with an external control to match a desired input/output (I/O) filtering response are engineered based on the well-characterized promoter-RBS libraries and a cascade gene circuit topology. In the field of synthetic biology, the biological filter system serves as a powerful detector or sensor to sense different molecular signals and produces a specific output response only if the concentration of the input molecular signal is higher or lower than a specified threshold. The proposed systematic design method of robust biological filters is summarized into three steps.
View Article and Find Full Text PDFBackground: ZAC, a zinc finger protein regulating cell cycle arrest and apoptosis, mRNA was found highly expressed in the hyper-proliferative epidermal compartment of psoriatic skin. On the other hand, curcumin has been tried for treatment of psoriasis partly due to its anti-proliferative property.
Objectives: Since cyclin D1 is a positive regulator for cell-cycle progression and its expression can be inhibited by curcumin, we would like to test whether the expression of cyclin D1 can be affected by Zac1.
Background: Synthetic genetic transistors are vital for signal amplification and switching in genetic circuits. However, it is still problematic to efficiently select the adequate promoters, Ribosome Binding Sides (RBSs) and inducer concentrations to construct a genetic transistor with the desired linear amplification or switching in the Input/Output (I/O) characteristics for practical applications.
Results: Three kinds of promoter-RBS libraries, i.
mTOR is a regulator of cell growth and survival, protein synthesis-dependent synaptic plasticity, and autophagic degradation of cellular components. When triggered by mTOR inactivation, macroautophagy degrades long-lived proteins and organelles via sequestration into autophagic vacuoles. mTOR further regulates synaptic plasticity, and neurodegeneration occurs when macroautophagy is deficient.
View Article and Find Full Text PDFThe mechanisms underlying the chronic neurodegeneration that occurs in Parkinson's disease (PD) are unknown. One emerging hypothesis is that neural systems deteriorate and eventually degenerate due to a primary failure of either extrinsic neurotrophic support or the intrinsic cellular pathways that mediate such support. One of the cellular pathways that have been often identified in mediating neurotrophic effects is that of PI3K/Akt signaling.
View Article and Find Full Text PDFAxon degeneration is a hallmark of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Such degeneration is not a passive event but rather an active process mediated by mechanisms that are distinct from the canonical pathways of programmed cell death that mediate destruction of the cell soma. Little is known of the diverse mechanisms involved, particularly those of retrograde axon degeneration.
View Article and Find Full Text PDFDespite tremendous growth in recent years in our knowledge of the molecular basis of Parkinson disease (PD) and the molecular pathways of cell injury and death, we remain without therapies that forestall disease progression. Although there are many possible explanations for this lack of success, one is that experimental therapeutics to date have not adequately focused on an important component of the disease process, that of axon degeneration. It remains unknown what neuronal compartment, either the soma or the axon, is involved at disease onset, although some have proposed that it is the axons and their terminals that take the initial brunt of injury.
View Article and Find Full Text PDFFor many neurodegenerative disorders, such as Parkinson's disease, there is evidence that the disease first affects axons and terminals of neurons that are selectively vulnerable. This would suggest that it may be possible to forestall progression by targeting the cellular mechanisms of axon degeneration. While it is now clear that these mechanisms are distinct from the pathways of programmed cell death, they are less well known.
View Article and Find Full Text PDFFollowing mitosis, specification and migration during embryogenesis, dopamine neurons of the mesencephalon undergo a postnatal naturally occurring cell death event that determines their final adult number, and a period of axonal growth that determines pattern and extent of target contacts. While a number of neurotrophic factors have been suggested to regulate these developmental events, little is known, especially in vivo, of the cell signaling pathways that mediate these effects. We have examined the possible role of Akt/Protein Kinase B by transduction of these neurons in vivo with adeno-associated viral vectors to express either a constitutively active or a dominant negative form of Akt/protein kinase B.
View Article and Find Full Text PDFActivation of c-jun N-terminal kinase (JNK) by the mitogen-activated protein kinase cascade has been shown to play an important role in the death of dopamine neurons of the substantia nigra, one of the principal neuronal populations affected in Parkinson's disease. However, it has remained unknown whether the JNK2 and JNK3 isoforms, either singly or in combination, are essential for apoptotic death, and, if so, the mechanisms involved. In addition, it has been unclear whether they play a role in axonal degeneration of these neurons in disease models.
View Article and Find Full Text PDFBlockage of the p53 tumor suppressor has been found to impair nerve growth factor (NGF)-induced neurite outgrowth in PC-12 cells. We report herein that such impairment could be rescued by stimulation of the A(2A) adenosine receptor (A(2A)-R), a G protein-coupled receptor implicated in neuronal plasticity. The A(2A)-R-mediated rescue occurred in the presence of protein kinase C (PKC) inhibitors or protein kinase A (PKA) inhibitors and in a PKA-deficient PC-12 variant.
View Article and Find Full Text PDFWe found in the present study that stimulation of the A(2A) adenosine receptor (A(2A)-R) using an A(2A)-selective agonist (CGS21680) rescued the blockage of nerve growth factor (NGF)-induced neurite outgrowth when the NGF-evoked MAPK cascade was suppressed by an MEK inhibitor (PD98059) or by a dominant-negative MAPK mutant (dnMAPK). This action of A(2A)-R (designated as the A(2A)-rescue effect) can be blocked by two inhibitors of protein kinase A (PKA) and was absent in a PKA-deficient PC12 variant. Activation of the cAMP/PKA pathway by forskolin exerted the same effect as that by A(2A)-R stimulation.
View Article and Find Full Text PDF