Publications by authors named "Hsiao Fang Liang"

Diffusion Tensor Imaging (DTI) and Manganese Enhanced MRI (MEMRI) are noninvasive tools to characterize neural fiber microstructure and axonal transport. A combination of both may provide novel insights into the progress of neurodegeneration. To investigate the relationship of DTI and MEMRI in white matter of tauopathy, twelve optic nerves of 11-month-old p301L tau mice were imaged and finished with postmortem immunohistochemistry.

View Article and Find Full Text PDF

White matter abnormalities, revealed by Diffusion Tensor Imaging (DTI), are observed in patients with Alzheimer's Disease (AD), representing neural network deficits that underlie gradual cognitive decline in patients. However, how DTI changes related to the development of Amyloid beta (Aβ) and tau pathology, two key hallmarks of AD, remain elusive. We hypothesized that tauopathy induced by Aβ could initiate an axonal degeneration, leading to DTI-detectable white matter abnormalities.

View Article and Find Full Text PDF

Background: Clinical imaging modalities including optical coherence tomography (OCT) and diffusion tensor imaging (DTI) are vital in Multiple Sclerosis (MS), but their relationships during the different phases of Retinal ganglion cell (RGC) degeneration are not clear. We hypothesize that initial injury in optic nerve causes axonal degeneration leading to RGC loss in retina, which can be characterized by a combination of DTI and OCT. Our objective was to examine the correlation between noninvasive and histological data to chronicle the degeneration profile of RGCs in the retina and optic nerve in a mouse model of MS.

View Article and Find Full Text PDF

When given beyond 4.5 h of stroke onset, tissue plasminogen activator (tPA) induces deleterious side effects in the ischemic brain, notably, hemorrhagic transformation (HT). We examined the efficacy of granulocyte-colony stimulating factor (G-CSF) in reducing delayed tPA-induced HT, cerebral infarction, and neurological deficits in a thromboembolic (TE) stroke model, and whether the effects of G-CSF were sustained for longer periods of recovery.

View Article and Find Full Text PDF

Purpose: Diffusion tensor imaging (DTI) is commonly used to evaluate white matter integrity in multiple sclerosis (MS), but the relationship between DTI measures and functional changes during disease remains ambiguous. Using a mouse model of MS, we tested the hypothesis that DTI measures would correlate to the visual evoked potential (VEPs) dynamically at different disease stages.

Methods: In vivo DTI, gadolinium-enhanced T1WI (Gd-T1WI) and VEPs were performed in 5 control and 25 mice after 2-12 weeks of experimental autoimmune encephalomyelitis (EAE).

View Article and Find Full Text PDF

Purpose: To evaluate the feasibility of using diffusion tensor imaging (DTI) to characterize the temporospatial profile of axonal degeneration and its relation to blood-brain barrier (BBB) permeability.

Materials And Methods: Longitudinal DTI was performed in Wallerian degeneration slow (WldS) mice following retinal ischemia. In parallel, gadolinium (Gd)-enhanced T -weighted imaging (Gd-T WI) was performed to evaluate BBB permeability in white matter during axonal degeneration.

View Article and Find Full Text PDF

Background: Synaptic deficits and neuronal loss are the major pathological manifestations of Alzheimer's disease. However, the link between the early synaptic loss and subsequent neurodegeneration is not entirely clear. Cell culture studies have shown that amyloid-β (Aβ) applied to axonal terminals can cause retrograde degeneration leading to the neuronal loss, but this process has not been demonstrated in live animals.

View Article and Find Full Text PDF

Background: Diffusion tensor imaging (DTI) suggests the presence of white matter abnormality at the prodromal stage in human Alzheimer's disease (AD).

Objective: To use a mouse model of AD to determine whether the white matter abnormality detected by in vivo DTI is associated with functional deficits and axon damage.

Methods: Amyloid-β1-42 (Aβ1-42) was injected into the left lateral ventricle in mice.

View Article and Find Full Text PDF

Purpose: Optic nerve degeneration in diseases such as glaucoma and multiple sclerosis evolves in months to years. The use of Mn(2+)-Enhanced Magnetic Resonance Imaging (MEMRI) in a time-course study may provide new insights into the disease progression. Previously, we demonstrated the feasibility of using a topical administration for Mn(2+) delivery to the visual system.

View Article and Find Full Text PDF

Purpose: To evaluate topical loading as an alternative to intravitreal injection for Mn(2+)-enhanced magnetic resonance imaging (MEMRI) of the visual system.

Methods: Topical administration of 0.5 to 1.

View Article and Find Full Text PDF

Objective: Correlation of diffusion tensor imaging (DTI) with histochemical staining for demyelination and axonal damage in multiple sclerosis (MS) ex vivo human cervical spinal cords.

Background: In MS, demyelination, axonal degeneration, and inflammation contribute to disease pathogenesis to variable degrees. Based upon in vivo animal studies with acute injury and histopathologic correlation, we hypothesized that DTI can differentiate between axonal and myelin pathologies within humans.

View Article and Find Full Text PDF

Optic nerves from mice that have undergone retinal ischemia were examined using a newly implemented quantitative magnetization transfer (qMT) technique. Previously published results indicate that the optic nerve from retinal ischemia mice suffered significant axon degeneration without detectable myelin injury at 3 days after reperfusion. At this time point, we acquired ex vivo qMT parameters from both shiverer mice (which have nearly no myelin) and control mice that have undergone retinal ischemia, and these qMT measures were compared with diffusion tensor imaging (DTI) results.

View Article and Find Full Text PDF

A quantitative magnetization transfer (qMT) technique was employed to quantify the ratio of the sizes of the bound and free water proton pools in ex vivo mouse brains. The goal was to determine the pool size ratio sensitivity to myelin. Fixed brains from both shiverer mice and control littermates were imaged.

View Article and Find Full Text PDF

The changes of directional diffusivities derived from diffusion tensor imaging (DTI), i.e. decreased axial diffusivity (lambda(||)) and increased radial diffusivity (lambda( perpendicular)), have shown significant correlation with axonal and myelin damage, respectively.

View Article and Find Full Text PDF

Wallerian degeneration plays a significant role in many central nervous system (CNS) diseases. Tracking the progression of Wallerian degeneration may provide better understanding of the evolution of many CNS diseases. In this study, a 28-day longitudinal in vivo DTI of optic nerve (ON) and optic tract (OT) was conducted to evaluate the temporal and spatial evolution of Wallerian degeneration resulting from the transient retinal ischemia.

View Article and Find Full Text PDF

Recent studies have suggested that axonal damage, and not demyelination, is the primary cause of long-term neurological impairment in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). The axial and radial diffusivities derived from diffusion tensor imaging have shown promise as non-invasive surrogate markers of axonal damage and demyelination, respectively. In this study, in vivo diffusion tensor imaging of the spinal cords from mice with chronic EAE was performed to determine if axial diffusivity correlated with neurological disability in EAE assessed by the commonly used clinical scoring system.

View Article and Find Full Text PDF

In this study, axial (lambda(parallel)) and radial (lambda(perpendicular)) diffusivities derived from diffusion tensor imaging (DTI) were used to evaluate white matter injury in brains of mice affected by experimental autoimmune encephalomyelitis (EAE). Sixteen female C57BL/6 mice were immunized with amino acids 35-55 of myelin oligodendrocyte glycoprotein (MOG(35-55)). Three months after immunization, optic nerve and tract were severely affected with 19% and 18% decrease in lambda(parallel) respectively, suggesting the presence of axonal injury.

View Article and Find Full Text PDF

We examined in vivo measurements of directional diffusivity derived from diffusion tensor imaging (DTI) to study the evolution of ventrolateral white matter (VWM) changes following contusive spinal cord injury (SCI) in C57BL/6 mice at 1, 3, 7, and 14 days postinjury. Relative anisotropy maps provided excellent gray matter (GM)/white matter (WM) contrast for characterization of evolving WM injury at all time points. Longitudinal DTI measurements clearly demonstrated rostral-caudal injury asymmetry.

View Article and Find Full Text PDF

Diffusion tensor imaging (DTI) has been widely applied to investigate injuries in the central nervous system (CNS) white matter (WM). However, the underlying pathological correlates of diffusion changes have not been adequately determined. In this study the coregistration of histological sections to MR images and a pixel-based receiver operating characteristic (ROC) analysis were used to compare the axial (lambda( parallel)) and radial (lambda( perpendicular)) diffusivities derived from DTI and histological markers of axon (phosphorylated neurofilament, SMI-31) and myelin (Luxol fast blue (LFB)) integrity, respectively, in two different patterns of injury to mouse spinal cord (SC) WM.

View Article and Find Full Text PDF

Decreased axial (lambda(||)) and increased radial (lambda( perpendicular)) diffusivity have been shown to reflect axonal and myelin injury respectively. In the present study, evolving white matter injury within the optic nerves of mice with retinal ischemia was examined by in vivo and ex vivo measurements of lambda(||) and lambda( perpendicular). The results show that at 3 days after retinal ischemia, a 33% decrease in vivo and a 38% decrease ex vivo in lambda(||) without change in lambda( perpendicular) was observed in the injured optic nerve compared to the control, suggestive of axonal damage without myelin injury.

View Article and Find Full Text PDF

Previously, we tested the prediction that axonal damage results in decreased axial diffusivity (lambda(parallel)) while demyelination leads to increased radial diffusivity (lambda(perpendicular)). Cuprizone treatment of C57BL/6 mice was a highly reproducible model of CNS white matter demyelination and remyelination affecting the corpus callosum (CC). In the present study, six C57BL/6 male mice were fed 0.

View Article and Find Full Text PDF

In the current study, the feasibility and reproducibility of in vivo diffusion tensor imaging (DTI) of the spinal cord in normal mice are illustrated followed by its application to mice with experimental allergic encephalomyelitis (EAE) to detect and differentiate axon and myelin damage. Axial diffusivity, describing water movement along the axonal fiber tract, in all regions of spinal cord white matter from EAE-affected C57BL/6 mice was significantly decreased compared to normal mice, whereas there was no statistically significant change in radial diffusivity, describing water movement across the fiber tract. Furthermore, a direct comparison between DTI and histology from a single mouse demonstrated a decrease in axial diffusivity that was supported by widespread staining of antibody against beta-amyloid precursor protein.

View Article and Find Full Text PDF

This study was designed to determine whether formalin fixation alters diffusion parameters in the infarcted brain. Diffusion tensor images were obtained from anesthetized mice 1 hr after middle cerebral artery occlusion and repeated after formalin fixation of brains. In live animals, there was a significant decrease in the trace of the diffusion tensor (Tr(D)) in infarcted cortex and external capsule compared with contralateral brain areas, with no change in relative anisotropy (RA).

View Article and Find Full Text PDF

Cadmium, a well-known environmental hazard, has caused serious health problems in humans and animals. Accumulating evidence suggests the cadmium toxicity is mediated by oxidative stress-induced cell death. However, the molecular signaling underlying cadmium-induced apoptosis remains unclear.

View Article and Find Full Text PDF