Climate model projections for tropical regions show clear perturbation of precipitation patterns leading to increased frequency and severity of drought in some regions. Previous work has shown declining soil moisture to be a strong driver of changes in microbial trait distribution, however, the feedback of any shift in functional potential on ecosystem properties related to carbon cycling are poorly understood. Here we show that drought-induced changes in microbial functional diversity and activity shape, and are in turn shaped by, the composition of dissolved and soil-associated carbon.
View Article and Find Full Text PDFSoil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria.
View Article and Find Full Text PDFThe coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide with its infestations decreasing crop yield by up to 80%. Caffeine is an alkaloid that can be toxic to insects and is hypothesized to act as a defence mechanism to inhibit herbivory. Here we show that caffeine is degraded in the gut of H.
View Article and Find Full Text PDFIn this study of reductive chromium immobilization, we found that flow-through columns constructed with homogenized aquifer sediment and continuously infused with lactate, chromate, and various native electron acceptors diverged to have very different Cr(VI)-reducing biogeochemical regimes characterized by either denitrifying or fermentative conditions (as indicated by effluent chemical data, 16S rRNA pyrotag data, and metatranscriptome data). Despite the two dramatically different biogeochemical environments that evolved in the columns, these regimes created similar Cr(III)-Fe(III) hydroxide precipitates as the predominant Cr(VI) reduction product, as characterized by micro-X-ray fluorescence and micro-X-ray absorption near-edge structure analysis. We discuss two conflicting scenarios of microbially mediated formation of Cr(III)-Fe(III) precipitates, each of which is both supported and contradicted by different lines of evidence: (1) enzymatic reduction of Cr(VI) to Cr(III) followed by coprecipitation of Cr(III) and Fe(III) and (2) both regimes generated at least small amounts of Fe(II), which abiotically reduced Cr(VI) to form a Cr-Fe precipitate.
View Article and Find Full Text PDFGlobal climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance to subsequent perturbation? Here we reduced the quantity of precipitation throughfall to tropical forest soils in the Luquillo Mountains, Puerto Rico.
View Article and Find Full Text PDFChem Commun (Camb)
August 2011
A new pyrophosphate (PPi) chelator was designed for surface-sensitive electrical detection of biomolecular reactions. This article describes the synthesis of the PPi-selective receptor, its surface immobilization and application to label-free electrical detection on a silicon-based field-effect transistor (FET) sensor.
View Article and Find Full Text PDF