Expansion of the GGGGCC-RNA repeat is a known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which currently have no cure. Recent studies have indicated the activation of Sigma-1 receptor plays an important role in providing neuroprotection, especially in ALS and Alzheimer's disease. Nevertheless, the mechanisms underlying Sigma-1R activation and its effect on (GC)n-RNA-induced cell death remain unclear.
View Article and Find Full Text PDFAstroglial-fibrotic scars resulted from spinal cord injury affect motor and sensory function, leading to paralysis. In particular, the fibrotic scar is a main barrier that disrupts neuronal regeneration after spinal cord injury. However, the association between astrocytes and fibrotic scar formation is not yet understood.
View Article and Find Full Text PDFMacroautophagy/autophagy is an essential process for cellular survival and is implicated in many diseases. A critical step in autophagy is the transport of the transcription factor TFEB from the cytosol into the nucleus, through the nuclear pore (NP) by KPNB1/importinβ1. In the C9orf72 subtype of amyotrophic lateral sclerosis-frontotemporal lobar degeneration (ALS-FTD), the hexanucleotide (G4C2)RNA expansion (HRE) disrupts the nucleocytoplasmic transport of TFEB, compromising autophagy.
View Article and Find Full Text PDFSigma-1 receptors (Sig-1Rs) are endoplasmic reticulum (ER) chaperones implicated in neuropathic pain. Here we examine if the Sig-1R may relate to neuropathic pain at the level of dorsal root ganglia (DRG). We focus on the neuronal excitability of DRG in a "spare nerve injury" (SNI) model of neuropathic pain in rats and find that Sig-1Rs likely contribute to the genesis of DRG neuronal excitability by decreasing the protein level of voltage-gated Cav2.
View Article and Find Full Text PDFIn a subgroup of patients with amyotrophic lateral sclerosis (ALS)/Frontotemporal dementia (FTD), the (G4C2)-RNA repeat expansion from C9orf72 chromosome binds to the Ran-activating protein (RanGAP) at the nuclear pore, resulting in nucleocytoplasmic transport deficit and accumulation of Ran in the cytosol. Here, we found that the sigma-1 receptor (Sig-1R), a molecular chaperone, reverses the pathological effects of (G4C2)-RNA repeats in cell lines and in Drosophila. The Sig-1R colocalizes with RanGAP and nuclear pore proteins (Nups) and stabilizes the latter.
View Article and Find Full Text PDFSigma-1 receptor (Sig-1R) is a protein present in several organs such as brain, lung, and heart. In a cell, Sig-1R is mainly located across the membranes of the endoplasmic reticulum and more specifically at the mitochondria-associated membranes. Despite numerous studies showing that Sig-1R could be targeted to rescue several cellular mechanisms in different pathological conditions, less is known about its fundamental relevance.
View Article and Find Full Text PDFStore-operated Ca entry (SOCE) is a Ca influx pathway at the plasma membrane that replenishes intracellular Ca stores in response to depletion of Ca stores. The SOC current, also known as the Ca release-activated Ca current (I), has a small conductance, which makes selective recording difficult. This challenge may be addressed using techniques based on identification of Ca influx patch-clamp electrophysiological recording and measurement of cytoplasmic Ca accumulation with Ca-sensitive fluorophores.
View Article and Find Full Text PDFPainful nerve injury disrupts Ca signaling in primary sensory neurons by elevating plasma membrane Ca-ATPase (PMCA) function and depressing sarco-endoplasmic reticulum Ca-ATPase (SERCA) function, which decreases endoplasmic reticulum (ER) Ca stores and stimulates store-operated Ca entry (SOCE). The extracellular matrix glycoprotein thrombospondin-4 (TSP4), which is increased after painful nerve injury, decreases Ca current (I) through high-voltage-activated Ca channels and increases I through low-voltage-activated Ca channels in dorsal root ganglion neurons, which are events similar to the effect of nerve injury. We therefore examined whether TSP4 plays a critical role in injury-induced disruption of intracellular Ca signaling.
View Article and Find Full Text PDFDiabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy.
View Article and Find Full Text PDFLoss of high-voltage-activated (HVA) calcium current (ICa) and gain of low-voltage-activated (LVA) ICa after painful peripheral nerve injury cause elevated excitability in sensory neurons. Nerve injury is also accompanied by increased expression of the extracellular matrix glycoprotein thrombospondin-4 (TSP4), and interruption of TSP4 function can reverse or prevent behavioral hypersensitivity after injury. We therefore investigated TSP4 regulation of ICa in dorsal root ganglion (DRG) neurons.
View Article and Find Full Text PDFBackground: Heart failure with ejection fraction (HFpEF) is a syndrome resulting from several co-morbidities in which specific mediators are unknown. The platelet proteome responds to disease processes. We hypothesize that the platelet proteome will change composition in patients with HFpEF and may uncover mediators of the syndrome.
View Article and Find Full Text PDFUnlabelled: The sensation of touch is initiated when fast conducting low-threshold mechanoreceptors (Aβ-LTMRs) generate impulses at their terminals in the skin. Plasticity in this system is evident in the process of adaption, in which a period of diminished sensitivity follows prior stimulation. CaMKII is an ideal candidate for mediating activity-dependent plasticity in touch because it shifts into an enhanced activation state after neuronal depolarizations and can thereby reflect past firing history.
View Article and Find Full Text PDFBackground: Cell-based therapy may hold promise for treatment of chronic pain. Mesenchymal stem cells (MSCs) are readily available and robust, and their secretion of therapeutic peptides can be enhanced by genetically engineering. We explored the analgesic potential of transplanting bone marrow-derived MSCs that have been transduced with lentivectors.
View Article and Find Full Text PDFMitochondria critically regulate cytoplasmic Ca(2+) concentration ([Ca(2+)]c), but the effects of sensory neuron injury have not been examined. Using FCCP (1µM) to eliminate mitochondrial Ca(2+) uptake combined with oligomycin (10µM) to prevent ATP depletion, we first identified features of depolarization-induced neuronal [Ca(2+)]c transients that are sensitive to blockade of mitochondrial Ca(2+) buffering in order to assess mitochondrial contributions to [Ca(2+)]c regulation. This established the loss of a shoulder during the recovery of the depolarization (K(+))-induced transient, increased transient peak and area, and elevated shoulder level as evidence of diminished mitochondrial Ca(2+) buffering.
View Article and Find Full Text PDFCalcium/calmodulin-dependent protein kinase II (CaMKII) is recognized as a key element in encoding depolarization activity of excitable cells into facilitated voltage-gated Ca(2+) channel (VGCC) function. Less is known about the participation of CaMKII in regulating VGCCs in resting cells. We examined constitutive CaMKII control of Ca(2+) currents in peripheral sensory neurons acutely isolated from dorsal root ganglia (DRGs) of adult rats.
View Article and Find Full Text PDFSigma-1 receptor (σ1R), an endoplasmic reticulum-chaperone protein, can modulate painful response after peripheral nerve injury. We have demonstrated that voltage-gated calcium current is inhibited in axotomized sensory neurons. We examined whether σ1R contributes to the sensory dysfunction of voltage-gated calcium channel (VGCC) after peripheral nerve injury through electrophysiological approach in dissociated rat dorsal root ganglion (DRG) neurons.
View Article and Find Full Text PDFBackground: The sigma-1 receptor (σ1R), an endoplasmic reticulum chaperone protein, is widely distributed and regulates numerous intracellular processes in neurons. Nerve injury alters the structure and function of axotomized dorsal root ganglion (DRG) neurons, contributing to the development of pain. The σ1R is enriched in the spinal cord and modulates pain after peripheral nerve injury.
View Article and Find Full Text PDFCurrents through voltage-gated Ca²⁺ channels (I(Ca)) may be regulated by cytoplasmic Ca²⁺ levels ([Ca²⁺](c)), producing Ca²⁺-dependent inactivation (CDI) or facilitation (CDF). Since I(Ca) regulates sensory neuron excitability, altered CDI or CDF could contribute to pain generation after peripheral nerve injury. We explored this by manipulating [Ca²⁺](c) while recording I(Ca) in rat sensory neurons.
View Article and Find Full Text PDFBackground: The plasma membrane Ca2+-ATPase (PMCA) is the principal means by which sensory neurons expel Ca2+ and thereby regulate the concentration of cytoplasmic Ca2+ and the processes controlled by this critical second messenger. We have previously found that painful nerve injury decreases resting cytoplasmic Ca2+ levels and activity-induced cytoplasmic Ca2+ accumulation in axotomized sensory neurons. Here we examine the contribution of PMCA after nerve injury in a rat model of neuropathic pain.
View Article and Find Full Text PDFOpioid abuse and dependency are international problems. Studies have shown that neuronal inflammation and degeneration might be related to the development of opioid addiction. Thus, using neuroprotective agents might be beneficial for treating opioid addiction.
View Article and Find Full Text PDFAims: We have previously demonstrated that pretreatment with (+)-morphine given intrathecally attenuates the intrathecal (-)-morphine-produced tail-flick inhibition. The phenomenon has been defined as antianalgesia against (-)-morphine-produced analgesia. Present experiments were then undertaken to determine if the antianalgesic effect induced by (+)-morphine given spinally is mediated by the stimulation of the sigma-1 receptor in the mouse spinal cord.
View Article and Find Full Text PDFPainful nerve injury disrupts levels of cytoplasmic and stored Ca(2+) in sensory neurons. Since influx of Ca(2+) may occur through store-operated Ca(2+) entry (SOCE) as well as voltage- and ligand-activated pathways, we sought confirmation of SOCE in sensory neurons from adult rats and examined whether dysfunction of SOCE is a possible pathogenic mechanism. Dorsal root ganglion neurons displayed a fall in resting cytoplasmic Ca(2+) concentration when bath Ca(2+) was withdrawn, and a subsequent elevation of cytoplasmic Ca(2+) concentration (40 ± 5 nm) when Ca(2+) was reintroduced, which was amplified by store depletion with thapsigargin (1 μm), and was significantly reduced by blockers of SOCE, but was unaffected by antagonists of voltage-gated membrane Ca(2+) channels.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2010
We previously demonstrated that several epoxyeicosatrienoic acids (EETs) produce reductions in myocardial infarct size in rats and dogs. Since a recent study demonstrated the release of opioids in mediating the antinociceptive effect of 14,15-EET, we hypothesized that endogenous opioids may also be involved in mediating the cardioprotective effect of the EETs. To test this hypothesis, we used an in vivo rat model of infarction and a rat Langendorff model.
View Article and Find Full Text PDFUnlabelled: Noxious mechanical stimulation evokes a complex and sustained hyperalgesic motor response after peripheral nerve injury that contrasts with a brief and simple withdrawal seen after noxious stimulation in control animals or after threshold punctate mechanical stimulation by the von Frey technique. To test which of these behaviors indicate pain, the aversiveness of the experience associated with each was determined using a passive avoidance test in rats after sciatic nerve ligation (SNL) or skin incision alone. After 18 days, step-down latency was measured during 9 sequential trials at 10-minute intervals.
View Article and Find Full Text PDF