Healing of large calvarial bone defects in adults is challenging. We previously showed that inducing chondrogenic differentiation of mesenchymal stem cells from bone marrow (BMSC) or adipose tissue (ASC) before implantation can switch the repair pathway and improve calvarial bone healing. Split dCas12a activator is a new CRISPR activation system comprising the amino (N) and carboxyl (C) fragments of dCas12a protein, each being fused with synthetic transcription activators at both termini.
View Article and Find Full Text PDFCalvarial bone healing is challenging, especially for individuals with osteoporosis because stem cells from osteoporotic patients are highly prone to adipogenic differentiation. Based on previous findings that chondrogenic induction of adipose-derived stem cells (ASCs) can augment calvarial bone healing, we hypothesized that activating chondroinductive Sox Trio genes (Sox5, Sox6, Sox9) and repressing adipoinductive genes (C/ebp-α, Ppar-γ) in osteoporotic ASCs can reprogram cell differentiation and improve calvarial bone healing after implantation. However, simultaneous gene activation and repression in ASCs is difficult.
View Article and Find Full Text PDF