This paper proposes a deep learning based object detection method to locate a distant region in an image in real-time. It concentrates on distant objects from a vehicular front camcorder perspective, trying to solve one of the common problems in Advanced Driver Assistance Systems (ADAS) applications, which is, to detect the smaller and faraway objects with the same confidence as those with the bigger and closer objects. This paper presents an efficient multi-scale object detection network, termed as ConcentrateNet to detect a vanishing point and concentrate on the near-distant region.
View Article and Find Full Text PDFObjective: Falls are a major cause of disability and mortality in the elderly. Postural balance is associated with falls and can be evaluated by posturography. However, conventional posturography is costly and requires a sufficiently large space to perform.
View Article and Find Full Text PDFUsing exact quantum Monte Carlo calculations, we examine the interplay between localization of electronic states driven by many-body correlations and that by randomness in a two-dimensional system featuring linearly vanishing density of states at the Fermi level. A novel disorder-induced nonmagnetic insulating phase is found to emerge from the zero-temperature quantum critical point separating a semimetal and a Mott insulator. Within this phase, a phase transition from a gapless Anderson-like insulator to a gapped Mott-like insulator is identified.
View Article and Find Full Text PDFWe study a vortex chain in a thin film of a topological insulator with proximity-induced superconductivity-a promising platform to realize Majorana zero modes (MZMs)-by modeling it as a two-leg Majorana ladder. While each pair of MZMs hybridizes through vortex tunneling, we hereby show that MZMs can be stabilized on the ends of the ladder with the presence of tilted external magnetic field and four-Majorana interaction. Furthermore, a fruitful phase diagram is obtained by controlling the direction of magnetic field and the thickness of the sample.
View Article and Find Full Text PDFWe investigate the thermodynamic properties of a half-filled SU(2N) Hubbard model in the two-dimensional square lattice by the method of the determinant quantum Monte Carlo simulation, which is free of the fermion "sign problem." The large number of hyperfine-spin components enhances spin fluctuations, which facilitates the Pomeranchuk cooling to temperatures comparable to the superexchange energy scale in the case of SU(6). Various physical quantities including entropy, charge fluctuations, and spin correlations are calculated.
View Article and Find Full Text PDFWe investigated the electron-pairing mechanism in an iron-based superconductor, iron selenide (FeSe), using scanning tunneling microscopy and spectroscopy. Tunneling conductance spectra of stoichiometric FeSe crystalline films in their superconducting state revealed evidence for a gap function with nodal lines. Electron pairing with twofold symmetry was demonstrated by direct imaging of quasiparticle excitations in the vicinity of magnetic vortex cores, Fe adatoms, and Se vacancies.
View Article and Find Full Text PDF