J Nanosci Nanotechnol
October 2010
This study reports the use of single-crystalline and well-aligned ZnO nanowires as photoanode material for dye-sensitized solar cells. The ZnO nanowires are grown on fluorine-doped tin oxide coated glass substrates without catalysts by thermal evaporation. In spite of low roughness factors of around 25 for the nanowire photoanodes, the fabricated solar cells yield power conversion efficiencies of around 1.
View Article and Find Full Text PDFIn this work, the fabrication of metal nanostructures by a combination of atomic force microscopy nanomachining on a thin polymer resist, metal coating and lift-off is presented. Nanodots with sizes down to 20 nm and nanowires with widths ranging between 40 and 100 nm have been successfully created by nanoindenting and nanoscratching. The results exemplify the feasibility and effectiveness of the present technique as an alternative to e-beam lithography.
View Article and Find Full Text PDFWe report a convenient method for the fabrication of a single metal nanowire connected with dissimilar metal electrodes and its application to chemical sensing. The method is based on a combination of atomic force microscopy nanomachining and conventional photolithography. The success of this integrated approach is confirmed by the linear current-voltage behavior of the created nanowires and comparable resistivities with those reported previously.
View Article and Find Full Text PDF