Publications by authors named "Hrncir M"

The global decline of pollinators has become a major concern for the scientific community, policymakers, and the general public. Among the main drivers of diminishing bee populations is the widespread use of agrochemicals. To gain a comprehensive understanding of the foraging dynamics of bees at agrochemical-contaminated areas, it is essential to consider both environmental conditions and the specific foraging ecology of bee species.

View Article and Find Full Text PDF

The conservation of terrestrial ecosystems depends largely on the preservation of pollinators, mainly bees. Stingless bees are among the main pollinators of native plants and crops in tropical regions, where they can be exposed to agrochemicals while foraging on contaminated flowers. In the present study, we investigated the effects on stingless bees of both a commonly used insecticide and herbicide in Brazil.

View Article and Find Full Text PDF

Communication is a fundamental feature of animal societies and helps their members to solve the challenges they encounter, from exploiting food sources to fighting enemies or finding a new home. Eusocial bees inhabit a wide range of environments and they have evolved a multitude of communication signals that help them exploit resources in their environment efficiently. We highlight recent advances in our understanding of bee communication strategies and discuss how variation in social biology, such as colony size or nesting habits, and ecological conditions are important drivers of variation in communication strategies.

View Article and Find Full Text PDF

For pollinator conservation in human-transformed landscapes, it is crucial to know whether species can overcome gaps between fragments of natural habitat. A new study reveals why colony size, recruitment communication, and flower constancy increase the foraging ranges in social bees.

View Article and Find Full Text PDF

Background: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies.

View Article and Find Full Text PDF

Many ectotherms have the ability to voluntarily detach a body part, known as autotomy, usually in response to predator attacks. Autotomy can have an immediate benefit for survival, but it can also involve costs related to the individual's body condition. Even though the effects of autotomy have been studied in many ecophysiological aspects, its short-term costs on the ability to tolerate high environmental temperatures are still unexplored.

View Article and Find Full Text PDF

In social bees, the choice of food sources is based on several factors, including scent marks, color, and location of flowers. Here, we used similar setups, in which two stingless bee species, and , and the Western honeybee, , were tested regarding the importance of chemical cues, color cues, and location-dependent cues for foraging behavior. It was determined whether workers chose food sources according to (1) scent marks deposited by conspecifics, (2) the color hue of a food source, (3) the trained location or the proximity of a food source to the hive.

View Article and Find Full Text PDF

The thoracic temperature (T) of foraging bees usually exceeds ambient air temperatures (T) by several degrees. In hot tropical climate zones, therefore, individuals may reach body temperatures close to their critical thermal maxima, which might constrain their activity. In the present study, we tested the hypothesis that thermal stress increases with flight distance in nectar foragers of M.

View Article and Find Full Text PDF

In the Brazilian Tropical Dry Forest, the Caatinga, stingless bees (Apidae, Meliponini) need to adjust their foraging behavior to a very short and unpredictable blooming period. Melipona subnitida Ducke 1910 is one of the few meliponine species adapted to the environmental peculiarities of this biome. To get an insight into how these highly eusocial bees are able to maintain their perennial colonies despite extended periods of food scarcity, we asked the following questions: (1) At which plant species do colonies of M.

View Article and Find Full Text PDF

Eusocial bee foragers leave their nest with nectar as flight fuel, therewith reducing the risk of starvation during a foraging trip. Yet, the extra mass results in an increase of energetic expenditure for flight. Thus, bees should tune their fuel loads to the respective foraging situation.

View Article and Find Full Text PDF

Habitat degradation and climate change are currently threatening wild pollinators, compromising their ability to provide pollination services to wild and cultivated plants. Landscape genomics offers powerful tools to assess the influence of landscape modifications on genetic diversity and functional connectivity, and to identify adaptations to local environmental conditions that could facilitate future bee survival. Here, we assessed range-wide patterns of genetic structure, genetic diversity, gene flow, and local adaptation in the stingless bee a tropical pollinator of key biological and economic importance inhabiting one of the driest and hottest regions of South America.

View Article and Find Full Text PDF

Nearly half of all terrestrial tropical ecosystems around the globe comprise dry forests, characterised through elevated temperatures all year round, and short rainy seasons at irregular intervals. The consequent water deficit over several consecutive months limits the availability of floral resources to often very brief and unpredictable periods, which poses a challenge to the maintenance of perennial colonies in highly eusocial bees. Thus, only few highly eusocial bees occur permanently in tropical dry forests, among them some highly adapted species of stingless bees (Apidae, Meliponini).

View Article and Find Full Text PDF

In social insects, the tuning of activity levels among different worker task groups, which constitutes a fundamental basis of colony organization, relies on the exchange of reliable information on the activity level of individuals. The underlying stimuli, however, have remained largely unexplored so far. In the present study, we describe low-frequency thoracic vibrations generated by honey bee workers (Apis mellifera) within the colony, whose velocity amplitudes and main frequency components significantly increased with the level of an individual's activity.

View Article and Find Full Text PDF
Stingless bees (Meliponini): senses and behavior.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

October 2016

Stingless bees (Hymenoptera, Apidae, Meliponini) are by far the largest group of eusocial bees on Earth. Due to the diversity of evolutionary responses to specific ecological challenges, the Meliponini are well suited for comparative studies of the various adaptations to the environment found in highly eusocial bees. Of particular interest are the physiological mechanisms underlying the sophisticated cooperative and collective actions of entire colonies, which form the basis of the ecological success of the different bee species under the particular conditions prevailing in their respective environment.

View Article and Find Full Text PDF

Foraging insects leave chemical footprints on flowers that subsequent foragers may use as indicators for recent flower visits and, thus, potential resource depletion. Accordingly, foragers should reject food sources presenting these chemical cues. Contrasting this assumption, experimental studies in stingless bees (Apidae, Meliponini), so far, demonstrated an attractive effect of footprints.

View Article and Find Full Text PDF

In stingless bees (Meliponini) like in many other eusocial insect colonies food hoarding plays an important role in colony survival. However, very little is known on how Meliponini, a taxon restricted to tropical and subtropical regions, respond to different store conditions. We studied the impact of honey removal on nectar foraging activity and recruitment behaviour in Melipona scutellaris and compared our results with studies of the honey bee Apis mellifera.

View Article and Find Full Text PDF

Highly eusocial bees (honey bees and stingless bees) sustain their colonies through periods of resource scarcity by food stored within the nest. The protein supply necessary for successful brood production is ensured through adjustments of the colonies' pollen foraging according to the availability of this resource in the environment. In honey bees Apis mellifera, in addition, pollen foraging is regulated through the broods' demand for this resource.

View Article and Find Full Text PDF

Among social insects, the stingless bees (Apidae, Meliponini), a mainly tropical group of highly eusocial bees, present an intriguing variety of well-described olfactory-dependent behaviors showing both caste- and sex-specific adaptations. By contrast, little is known about the neural structures underlying such behavioral richness or the olfactory detection and processing abilities of this insect group. This study therefore aimed to provide the first detailed description and comparison of the brains and primary olfactory centers, the antennal lobes, of the different members of a colony of the stingless bee Melipona scutellaris.

View Article and Find Full Text PDF

Between April and June of 2012 mantisflies (Plega hagenella) were found to be extensively parasitizing the nests of two groups of managed colonzies of eusocial stingless bees (Melipona subnitida) in the semi-arid region of northeastern Brazil. The mantisfly larvae developed inside closed brood cells of the bee comb, where each mantispid larva fed on the bee larva or pupa present in a single brood cell. Mature mantispid larvae pupated inside silken cocoons spun in place within their hosts' brood cells then emerged as pharate adults inside the bee colony.

View Article and Find Full Text PDF

The honey bee's waggle dance constitutes a remarkable example of an efficient code allowing social exploitation of available feeding sites. In addition to indicating the position (distance, direction) of a food patch, both the occurrence and frequency of the dances depend on the profitability of the exploited resource (sugar concentration, solution flow rate). During the waggle dance, successful foragers generate pulsed thoracic vibrations that putatively serve as a source of different kinds of information for hive bees, who cannot visually decode dances in the darkness of the hive.

View Article and Find Full Text PDF

Foragers can improve search efficiency, and ultimately fitness, by using social information: cues and signals produced by other animals that indicate food location or quality. Social information use has been well studied in predator-prey systems, but its functioning within a trophic level remains poorly understood. Eavesdropping, use of signals by unintended recipients, is of particular interest because eavesdroppers may exert selective pressure on signaling systems.

View Article and Find Full Text PDF

The pollination effectiveness of the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera was tested in tomato plots. The experiment was conducted in four greenhouses as well as in an external open plot in Ribeirão Preto, SP, Brazil. The tomato plants were exposed to visits by M.

View Article and Find Full Text PDF

We investigated the success of two stingless bee species in pollinating strawberries in greenhouses. Three greenhouses and one open field area were used; one greenhouse had only strawberry plants (control), another (G1) had three colonies of Scaptotrigona aff. depilis and another (G2) had three colonies of Nannotrigona testaceicornis.

View Article and Find Full Text PDF

We describe a case of a spontaneously established mixed colony of two species of stingless bees. The host colony of Scaptotrigona depilis, an aggressive bee that forms large colonies, was invaded by workers of Nannotrigona testaceicornis, a smaller bee that forms small colonies. The host colony and the invading species colony were maintained in next boxes about 1.

View Article and Find Full Text PDF