The soybean is agro-economically the most important among all cultivated legume crops, and its seed color is considered one of the most attractive factors in the selection-by-breeders. Thus, genome-wide identification of genes and loci associated with seed colors is critical for the precision breeding of crop soybeans. To dissect seed pigmentation-associated genomic loci and genes, we employed dual approaches by combining reference-based genome-wide association study (rbGWAS) and k-mer-based reference-free GWAS (rfGWAS) with 438 Glycine accessions.
View Article and Find Full Text PDFStatins are mainstay anti-lipidaemic treatments for preventing cardiovascular diseases but also known to increase coronary artery calcification (CAC). However, underlying relationship between statin and CAC is still unclear. This study explored the mediating role of five statin-related biochemical factors [i.
View Article and Find Full Text PDFWe report an extension of plasmonic lithography to nanoscale 2.5-dimensional (2.5D) surface patterning.
View Article and Find Full Text PDFWe present an analytical formula to predict the three-dimensional field distribution of a nanoscale bowtie aperture using quasi-spherical waves (QSWs) and surface plasmon polaritons, which are excited by the fundamental waveguide mode and local plasmons of the aperture, respectively. Assuming two separate bowtie apertures in a metal film, we analysed the decay characteristics of QSWs using a finite difference time-domain method. To verify the formula, we recorded the spot patterns of the bowtie aperture on a photoresist film using various exposure times, and fit the patterns to the analytical formula in terms of the width and depth of the patterns.
View Article and Find Full Text PDFBackground: A linear programming (LP) model was proposed to create de-identified data sets that maximally include spatial detail (e.g., geocodes such as ZIP or postal codes, census blocks, and locations on maps) while complying with the HIPAA Privacy Rule's Expert Determination method, i.
View Article and Find Full Text PDFA theoretical model is introduced to evaluate the ultimate resolution of plasmonic lithography using a ridge aperture. The calculated and experimental results of the line array pattern depth are compared for various half pitches. The theoretical analysis predicts that the resolution of plasmonic lithography strongly depends on the ridge gap, achieving values under 1x nm with a ridge gap smaller than 10 nm.
View Article and Find Full Text PDFIn nanolithography using optical near-field sources to push the critical dimension below the diffraction limit, optimization of process parameters is of utmost importance. Herein we present a simple analytic model to predict photoresist profiles with a localized evanescent exposure that decays exponentially in a photoresist of finite contrast. We introduce the concept of nominal developing thickness (NDT) to determine the proper developing process that yields the best topography of the exposure profile fitting to the isointensity contour.
View Article and Find Full Text PDFPlasmonic lithography with a contact probe records nano-meter scale features and has high-throughput owing to its capability to scan in contact mode. The probe is commonly based on a micrometer-scale cantilever, which leads to the tip-positioning problem due to force-deflection that induces lateral tip displacement. We propose a geometrically modified probe to achieve high positioning accuracy.
View Article and Find Full Text PDFWe demonstrate plasmonic lithography with an optical contact probe to achieve high speed patterning without external gap distance control between the probe and the photoresist. The bottom surface of the probe is covered with a 10 nm thickness silica glass film for the gap distance control and coated with self-assembled monolayer (SAM) to reduce friction between the probe and the photoresist. We achieve a patterning resolution of ~50 nm and a patterning speed of ~10 mm/s.
View Article and Find Full Text PDF