Degree of genomic instability closely correlates with poor prognosis, drug resistance as well as poor survival across human cancer of different origins. This study assessed the relationship between DNA damage response (DDR) and chromosome instability in hepatocellular carcinoma (HCC). We investigated DDR signaling in HCC cells by analyzing DNA damage-dependent redistribution of major DDR proteins to damaged chromatin using immunofluorescence microscopy and Western blotting experimentations.
View Article and Find Full Text PDFLoading of p53-binding protein 1 (53BP1) and receptor-associated protein 80 (RAP80) at DNA double-strand breaks (DSBs) drives cell cycle checkpoint activation but is counterproductive to high-fidelity DNA repair. ring finger protein 169 (RNF169) maintains the balance by limiting the deposition of DNA damage mediator proteins at the damaged chromatin. We report here that this attribute is accomplished, in part, by a predicted nuclear localization signal (NLS) that not only shuttles RNF169 into the nucleus but also promotes its stability by mediating a direct interaction with the ubiquitin-specific protease USP7.
View Article and Find Full Text PDF