We investigate a new regime of inertial Alfvén wave turbulence observed in the very low beta plasma of the auroral ionosphere using electric and magnetic field measurements by the TRICE-2 sounding rocket. Combining the observed features of the electric and magnetic field frequency spectra with the linear properties of inertial Alfvén waves, we deduce the path of the anisotropic turbulent cascade through wave vector space. We find a critically balanced cascade through the magnetohydrodynamic scales of the inertial range down to the perpendicular scale of the plasma skin depth, followed by a parallel cascade to the ion inertial length.
View Article and Find Full Text PDFJ Geophys Res Space Phys
September 2020
We perform a power spectral analysis of magnetic field fluctuations measured by the Rosetta spacecraft's magnetometer at comet 67P/Churyumov-Gerasimenko. We interpret the power spectral signatures in terms of plasma turbulent processes and discover that different turbulent processes are prominent during different active phases of the comet. During the weakly active phase of the comet, dominant injection is prominent at low frequencies near 10 Hz, while partial energy cascade or dispersion is prominent at high frequencies near 10 Hz.
View Article and Find Full Text PDFWhile the aurora has attracted attention for millennia, important questions remain unanswered. Foremost is how auroral electrons are accelerated before colliding with the ionosphere and producing auroral light. Powerful Alfvén waves are often found traveling Earthward above auroras with sufficient energy to generate auroras, but there has been no direct measurement of the processes by which Alfvén waves transfer their energy to auroral electrons.
View Article and Find Full Text PDFBackground And Objectives: Multiple variables play a role in spinal cord stimulation (SCS) treatment outcomes, including patient anatomy, pain pattern, lead location, stimulation parameters, and so on. A wide range of stimulation parameters are considered safe and on-label, and as a result a growing number of new frequencies and frequency-combinations are being incorporated into standard practice. A standardized approach to therapy delivery may provide more consistent outcomes for more patients.
View Article and Find Full Text PDFDuring the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvénic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of helmet streamers, from interchange reconnection near coronal hole boundaries, or within coronal holes with highly diverging magnetic fields.
View Article and Find Full Text PDFBackground: Acute subdural hemorrhage often occurs in those ≥65 years of age after trauma and tends to yield poor clinical outcomes. Previous studies have demonstrated a propensity toward high in-hospital mortality rates in this population; however, postdischarge mortality data are limited. The objective of the present study was to analyze short- and long-term mortality data after acute traumatic subdural hemorrhage in the geriatric population as well as review the impact of associated clinical variables including mechanism of injury, pre-morbid antithrombotic use, and need for surgical decompression on mortality rates.
View Article and Find Full Text PDFHow turbulent energy is dissipated in weakly collisional space and astrophysical plasmas is a major open question. Here, we present the application of a field-particle correlation technique to directly measure the transfer of energy between the turbulent electromagnetic field and electrons in the Earth's magnetosheath, the region of solar wind downstream of the Earth's bow shock. The measurement of the secular energy transfer from the parallel electric field as a function of electron velocity shows a signature consistent with Landau damping.
View Article and Find Full Text PDFBackground The Accreditation Council for Graduate Medical Education and the American Osteopathic Association recently agreed to establish a single graduate medical education system for the United States allopathic and osteopathic resident physicians by 2020. Consequential to this merger, new standards will be implemented for academic and research requirements within medical schools as well as residency programs. In the United States, osteopathic medicine is considered to be a parallel profession to allopathic medicine.
View Article and Find Full Text PDFMany pre-health students pursue extracurricular shadowing opportunities to gain clinical experience. The Virginia Tech School of Neuroscience introduced a formal course that provides a clinical experience superior to that received by many medical students. This course is composed of weekly 75-minute seminars that cover diseases affecting the nervous system, their diagnosis and treatment, complemented by weekly half-day intensive clinical experiences with unprecedented access to a team of neurosurgeons (in hospital operating rooms, Intensive Care Units, emergency room, angiographic suites, and wards).
View Article and Find Full Text PDFUnder the low density and high temperature conditions typical of heliospheric plasmas, the macroscopic evolution of the heliosphere is strongly affected by the kinetic plasma physics governing fundamental microphysical mechanisms. Kinetic turbulence, collisionless magnetic reconnection, particle acceleration, and kinetic instabilities are four poorly understood, grand-challenge problems that lie at the new frontier of kinetic heliophysics. The increasing availability of high cadence and high phase-space resolution measurements of particle velocity distributions by current and upcoming spacecraft missions and of massively parallel nonlinear kinetic simulations of weakly collisional heliospheric plasmas provides the opportunity to transform our understanding of these kinetic mechanisms through the full utilization of the information contained in the particle velocity distributions.
View Article and Find Full Text PDFVocal behavior of blue whales () in the Gulf of Corcovado, Chile, was analysed using both audio and accelerometer data from digital acoustic recording tags (DTAGs). Over the course of three austral summers (2014, 2015 and 2016), seventeen tags were deployed, yielding 124 h of data. We report the occurrence of Southeast Pacific type 2 (SEP2) calls, which exhibit peak frequencies, durations and timing consistent with previous recordings made using towed and moored hydrophones.
View Article and Find Full Text PDFNonlinear energy transfer and dissipation in Alfvén wave turbulence are analyzed in the first gyrokinetic simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire kinetic range k(⊥)ρ(I)≳1.
View Article and Find Full Text PDFA dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed.
View Article and Find Full Text PDFJ Spinal Disord Tech
February 2014
Objective And Summary Of Background Data: Surgical treatment of lumbar disk herniation is traditionally accomplished by removal of the extruded fragment as well as an aggressive decompression of the disk space. This retrospective study evaluates the long-term results of limited discectomy, otherwise known as fragmentectomy, for lumbar disk herniation using a minimally invasive technique. Although there are ample studies in literature regarding short-term outcome after limited microdiscectomy, there is a paucity of literature for long-term outcomes after fragmentectomy.
View Article and Find Full Text PDFTurbulence is a ubiquitous phenomenon in space and astrophysical plasmas, driving a cascade of energy from large to small scales and strongly influencing the plasma heating resulting from the dissipation of the turbulence. Modern theories of plasma turbulence are based on the fundamental concept that the turbulent cascade of energy is caused by the nonlinear interaction between counterpropagating Alfvén waves, yet this interaction has never been observationally or experimentally verified. We present here the first experimental measurement in a laboratory plasma of the nonlinear interaction between counterpropagating Alfvén waves, the fundamental building block of astrophysical plasma turbulence.
View Article and Find Full Text PDFWe have designed an electric and magnetic field probe which simultaneously measure both quantities in the directions perpendicular to the background magnetic field for application to Alfvén wave experiments in the Large Plasma Device at UCLA. This new probe allows for the projection of measured wave fields onto generalized Elsässer variables. Experiments were conducted in a singly ionized He plasma at 1850 G in which propagation of Alfvén waves was observed using this new probe.
View Article and Find Full Text PDFA three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k(-2.8) as observed in in situ spacecraft measurements of the "dissipation range" of solar wind turbulence.
View Article and Find Full Text PDFThe proton temperature anisotropy in the solar wind is known to be constrained by the theoretical thresholds for pressure-anisotropy-driven instabilities. Here, we use approximately 1x10;{6} independent measurements of gyroscale magnetic fluctuations in the solar wind to show for the first time that these fluctuations are enhanced along the temperature anisotropy thresholds of the mirror, proton oblique firehose, and ion cyclotron instabilities. In addition, the measured magnetic compressibility is enhanced at high plasma beta (beta_{ parallel} greater, similar1) along the mirror instability threshold but small elsewhere, consistent with expectations of the mirror mode.
View Article and Find Full Text PDFElectrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear decorrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.
View Article and Find Full Text PDFObjective: To search for correlations between specific anatomic, geometric, and morphological properties of the trigeminal nerve and the success of radiosurgical treatment and elimination of facial hypesthesia as a complication.
Methods: Forty-six patients with at least 6 months of follow-up after CyberKnife (Accuray, Inc., Sunnyvale, CA) rhizotomy were retrospectively reviewed.
This Letter presents the first ab initio, fully electromagnetic, kinetic simulations of magnetized turbulence in a homogeneous, weakly collisional plasma at the scale of the ion Larmor radius (ion gyroscale). Magnetic- and electric-field energy spectra show a break at the ion gyroscale; the spectral slopes are consistent with scaling predictions for critically balanced turbulence of Alfvén waves above the ion gyroscale (spectral index -5/3) and of kinetic Alfvén waves below the ion gyroscale (spectral indices of -7/3 for magnetic and -1/3 for electric fluctuations). This behavior is also qualitatively consistent with in situ measurements of turbulence in the solar wind.
View Article and Find Full Text PDFClin Neurol Neurosurg
February 2007
The authors report on the first such case of ganglioglioma and a malignant variant in the same individual without prior irradiation. Gangliogliomas are frequently encountered in children and young adults and have a predilection for the temporal lobes. Sporadic cases of malignant degeneration have been reported; however, most cases have undergone radiation or subtotal resection.
View Article and Find Full Text PDF