Publications by authors named "Howard W Clark"

Neonatal respiratory distress syndrome (nRDS) is a challenging condition to diagnose which can lead to delays in receiving appropriate treatment. Mid infrared (IR) spectroscopy is capable of measuring the concentrations of two diagnostic nRDS biomarkers, lecithin (L) and sphingomyelin (S) with the potential for point of care (POC) diagnosis and monitoring. The effects of varying other lipid species present in lung surfactant on the mid IR spectra used to train machine learning models are explored.

View Article and Find Full Text PDF

SARS-CoV-2 directly targets alveolar epithelial cells and can lead to surfactant deficiency. Early reports suggested surfactant replacement may be effective in improving outcomes. The aim of the study to assess the feasibility and efficacy of nebulized surfactant in mechanically ventilated COVID-19 patients.

View Article and Find Full Text PDF

Importance: The long-term effects of surfactant administration via a thin catheter (minimally invasive surfactant therapy [MIST]) in preterm infants with respiratory distress syndrome remain to be definitively clarified.

Objective: To examine the effect of MIST on death or neurodevelopmental disability (NDD) at 2 years' corrected age.

Design, Setting, And Participants: Follow-up study of a randomized clinical trial with blinding of clinicians and outcome assessors conducted in 33 tertiary-level neonatal intensive care units in 11 countries.

View Article and Find Full Text PDF

Rationale: Pulmonary surfactant is vital for lung homeostasis as it reduces surface tension to prevent alveolar collapse and provides essential immune-regulatory and antipathogenic functions. Previous studies demonstrated dysregulation of some individual surfactant components in COPD. We investigated relationships between COPD disease measures and dysregulation of surfactant components to gain new insights into potential disease mechanisms.

View Article and Find Full Text PDF

Background: Blinding of treatment allocation from treating clinicians in neonatal randomised controlled trials can minimise performance bias, but its effectiveness is rarely assessed.

Methods: To examine the effectiveness of blinding a procedural intervention from treating clinicians in a multicentre randomised controlled trial of minimally invasive surfactant therapy versus sham treatment in preterm infants of gestation 25-28 weeks with respiratory distress syndrome. The intervention (minimally invasive surfactant therapy or sham) was performed behind a screen within the first 6 h of life by a 'study team' uninvolved in clinical care including decision-making.

View Article and Find Full Text PDF

The authors of this study developed the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) combined with machine learning as a point-of-care (POC) diagnostic platform, considering neonatal respiratory distress syndrome (nRDS), for which no POC currently exists, as an example. nRDS can be diagnosed by a ratio of less than 2.2 of two nRDS biomarkers, lecithin and sphingomyelin (L/S ratio), and in this study, ATR-FTIR spectra were recorded from L/S ratios of between 1.

View Article and Find Full Text PDF

Importance: The benefits of surfactant administration via a thin catheter (minimally invasive surfactant therapy [MIST]) in preterm infants with respiratory distress syndrome are uncertain.

Objective: To examine the effect of selective application of MIST at a low fraction of inspired oxygen threshold on survival without bronchopulmonary dysplasia (BPD).

Design, Setting, And Participants: Randomized clinical trial including 485 preterm infants with a gestational age of 25 to 28 weeks who were supported with continuous positive airway pressure (CPAP) and required a fraction of inspired oxygen of 0.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) related to SARS-CoV-2 infection has some unusual characteristics that differentiate it from the pathophysiology described in the more 'typical' ARDS. Among multiple hypotheses, a close similarity has been suggested between COVID-19 ARDS and neonatal respiratory distress syndrome (RDS). With this opinion paper, we investigated the pathophysiological similarities between infant respiratory diseases (RDS and direct neonatal ARDS (NARDS)) and COVID-19 in adults.

View Article and Find Full Text PDF

Surfactant proteins A (SP-A) and D (SP-D) are soluble innate immune molecules which maintain lung homeostasis through their dual roles as anti-infectious and immunomodulatory agents. SP-A and SP-D bind numerous viruses including influenza A virus, respiratory syncytial virus (RSV) and human immunodeficiency virus (HIV), enhancing their clearance from mucosal points of entry and modulating the inflammatory response. They also have diverse roles in mediating innate and adaptive cell functions and in clearing apoptotic cells, allergens and other noxious particles.

View Article and Find Full Text PDF

Mass spectrometry imaging (MSI) visualizes molecular distributions throughout tissues but is blind to dynamic metabolic processes. Here, MSI with high mass resolution together with multiple stable isotope labeling provided spatial analyses of phosphatidylcholine (PC) metabolism in mouse lungs. Dysregulated surfactant metabolism is central to many respiratory diseases.

View Article and Find Full Text PDF

Background: Lipid metabolism in pregnancy delivers PUFAs from maternal liver to the developing fetus. The transition at birth to diets less enriched in PUFA is especially challenging for immature, extremely preterm infants who are typically supported by total parenteral nutrition.

Objective: The aim was to characterize phosphatidylcholine (PC) and choline metabolism in preterm infants and demonstrate the molecular specificity of PC synthesis by the immature preterm liver in vivo.

View Article and Find Full Text PDF

Cigarette smoke (CS) is the main cause of chronic obstructive pulmonary disease. Surfactant protein D (SP-D) is an important anti-inflammatory protein that regulates host immune defense in the lungs. Here, we investigated the role of SP-D in a murine model of CS-induced inflammation.

View Article and Find Full Text PDF

Aim: Sepsis is multifactorial and potentially devastating for preterm neonates. Changes in surfactant protein-D (SP-D), phosphatidylcholine (PC) and PC molecular species during infection may indicate innate immunity or inflammation during sepsis. We aimed to compare these important pulmonary molecules in ventilated neonates without or with sepsis.

View Article and Find Full Text PDF

Innate recognition of viruses is an essential part of the immune response to viral pathogens. This is integral to the maintenance of healthy lungs, which are free from infection and efficient at gaseous exchange. An important component of innate immunity for identifying viruses is the family of C-type collagen-containing lectins, also known as collectins.

View Article and Find Full Text PDF

Secreted pulmonary surfactant phosphatidylcholine (PC) has a complex intra-alveolar metabolism that involves uptake and recycling by alveolar type II epithelial cells, catabolism by alveolar macrophages, and loss up the bronchial tree. We compared the in vivo metabolism of animal-derived poractant alfa (Curosurf) and a synthetic surfactant (CHF5633) in adult male C57BL/6 mice. The mice were dosed intranasally with either surfactant (80 mg/kg body weight) containing universally C-labeled dipalmitoyl PC (DPPC) as a tracer.

View Article and Find Full Text PDF
Article Synopsis
  • The study details the crystal structures of a fragment of human SP-D that interacts with specific sugars from Salmonella bacteria.
  • The findings show that this protein preferentially targets a conserved sugar pair (Hep-Kdo) found in the bacteria's structure but can also adapt to bind different sugar configurations when necessary.
  • This research highlights the versatility of hSP-D in recognizing various bacterial components, which could have implications for understanding how the immune system identifies and responds to pathogens.
View Article and Find Full Text PDF

Objectives: We aimed to improve the nutritional care of preterm infants by developing a complex (multifaceted) intervention intended to translate current evidence into practice. We used the sociological framework of Normalization Process Theory (NPT), to guide implementation in order to embed the new practices into routine care.

Design: A prospective interventional study with a before and after methodology.

View Article and Find Full Text PDF

Surfactant proteins A (SP-A) and D (SP-D) are established as essential components of our innate immune system for protecting the lung from pathogens and allergens. They essentially exert their protective functions by regulating pulmonary homeostasis. Both proteins are however widely expressed throughout the body, including the female reproductive tract, urinary tract, gastrointestinal tract, the eye, ear, nasal compartment, central nervous system, the coronary artery and the skin.

View Article and Find Full Text PDF

The carbohydrate recognition domains (CRDs) of lung collectin surfactant protein D (SP-D) recognize sugar patterns on the surface of lung pathogens and promote phagocytosis. Using Haemophilus influenzae Eagan strains expressing well-characterized lipopolysaccharide (LPS) surface structures of various levels of complexity, we show that bacterial recognition and binding by SP-D is inversely related to LPS chain extent and complexity. The crystal structure of a biologically active recombinant trimeric SP-D CRD complexed with a delipidated Eagan 4A LPS suggests that efficient LPS recognition by SP-D requires multiple binding interactions utilizing the three major ligand-binding determinants in the SP-D binding pocket, with Ca-dependent binding of inner-core heptose accompanied by interaction of anhydro-Kdo (4,7-anhydro-3-deoxy-d-manno-oct-2-ulosonic acid) with Arg343 and Asp325.

View Article and Find Full Text PDF

Pulmonary epithelial cell responses can enhance type 2 immunity and contribute to control of nematode infections. An important epithelial product is the collectin Surfactant Protein D (SP-D). We found that SP-D concentrations increased in the lung following Nippostrongylus brasiliensis infection; this increase was dependent on key components of the type 2 immune response.

View Article and Find Full Text PDF

Background: Surfactant protein D (SP-D) is an essential component of the innate immune defense against pathogens within the airways. SP-D also regulates allergic inflammation and promotes the removal of apoptotic cells. SP-D dysregulation is evident in several pulmonary diseases.

View Article and Find Full Text PDF

Surfactant protein D (SP-D) is a pulmonary collectin important in lung immunity. SP-D-deficient mice (Sftpd(-/-)) are reported to be susceptible to ovalbumin (OVA)- and fungal allergen-induced pulmonary inflammation, while treatment with exogenous SP-D has therapeutic effects in such disease models. β-Glucans are a diverse group of polysaccharides previously suggested to serve as fungal ligands for SP-D.

View Article and Find Full Text PDF

Numerous epidemiological and toxicological studies have indicated that respiratory infections are exacerbated following enhanced exposure to airborne particulates. Surfactant protein A (SP-A) and SP-D form an important part of the innate immune response in the lung and can interact with nanoparticles to modulate the cellular uptake of these particles. We hypothesize that this interaction will also affect the ability of these proteins to combat infections.

View Article and Find Full Text PDF