Biochim Biophys Acta Mol Cell Biol Lipids
September 2017
The fungus Corynespora cassiicola metabolises exogenous steroids in a unique and highly specific manner. Central to this, is the ability of this organism to functionalise substrates (androgens, progestogens) at the highly stereochemically hindered 8β-position of the steroid nucleus. A recent study has identified that 8β-hydroxylation occurs through inverted binding in a 9α-hydroxylase.
View Article and Find Full Text PDFA series of 3α,5-cycloandrostane analogues with a range of functionality (6α and 6β alcohols and ketone) at carbon 6 were tested in the endogenous lactonization pathway in Aspergillus tamarii KITA. This metabolic route converts progesterone to testololactone in high yield through a four step enzymatic pathway. To date, no studies have looked at the effect of steroids devoid of polar functionality at carbon 3 and their subsequent metabolic fate by fungi which contain Baeyer-Villiger monooxygenases.
View Article and Find Full Text PDFCorynespora cassiicola has a unique but unexplored ability amongst fungi, in that it can hydroxylate 17α-hydroxyprogesterone at the highly hindered C-8 position of the steroid nucleus. In order to gain greater understanding of the mechanistic basis and capability of the 8β-hydroxylase we have transformed a range of structurally diverse androgens and progestogens with this organism. This has revealed that both steroid types can be hydroxylated at the 8β-position.
View Article and Find Full Text PDFFour isomers of 5α-androstan-3,17-diol have been transformed by the filamentous fungus Aspergillus tamarii, an organism which has the ability to convert progesterone to testololactone in high yield through an endogenous four step enzymatic pathway. The only diol handled within the lactonization pathway was 5α-androstan-3α,17β-diol which, uniquely underwent oxidation of the 17β-alcohol to the 17-ketone prior to its Baeyer-Villiger oxidation and the subsequent production of 3α-hydroxy-17a-oxa-D-homo-5α-androstan-17-one. This demonstrated highly specific stereochemical requirements of the 17β-hydroxysteroid dehydrogenase for oxidation of this specific steroidal diol to occur.
View Article and Find Full Text PDFAspergillus tamarii contains an endogenous lactonization pathway which can transform progesterone to testololactone in high yield through a sequential four step enzymatic pathway. In this pathway testosterone is formed which primarily undergoes oxidation of the C-17beta-alcohol to a C-17 ketone but, can also enter a minor hydroxylation pathway where 11beta-hydroxytestosterone is produced. It was recently demonstrated that this hydroxylase could monohydroxylate 3beta-hydroxy substituted saturated steroidal lactones in all four possible binding orientations (normal, reverse, inverted normal, inverted reverse) on rings B and C of the steroid nucleus.
View Article and Find Full Text PDFA series of steroids (progesterone, testosterone acetate, 17beta-acetoxy-5 alpha-androstan-3-one, testosterone and androst-4-en-3,17-dione) have been incubated with the thermophilic ascomycete Myceliophthora thermophila CBS 117.65. A wide range of biocatalytic activity was observed with modification at all four rings of the steroid nucleus and the C-17beta side-chain.
View Article and Find Full Text PDFThe fungus Aspergillus tamarii metabolizes progesterone to testololactone in high yield through a sequential four step enzymatic pathway which, has demonstrated flexibility in handling a range of steroidal probes. These substrates have revealed that subtle changes in the molecular structure of the steroid lead to significant changes in route of metabolism. It was therefore of interest to determine the metabolism of a range of 5-ene containing steroidal substrates.
View Article and Find Full Text PDFThis paper demonstrates for the first time transformation of a series of steroids (progesterone, androst-4-en-3,17-dione, testosterone, pregnenolone and dehydroepiandrosterone) by the thermophilic fungus Rhizomucor tauricus. All transformations were found to be oxidative (monohydroxylation and dihydroxylation) with allylic hydroxylation the predominant route of attack functionalizing the steroidal skeleta. Timed experiments demonstrated that dihydroxylation of progesterone, androst-4-en-3,17-dione and pregnenolone all initiated with hydroxylation on ring-B followed by attack on ring-C.
View Article and Find Full Text PDF