Publications by authors named "Howard S Neufeld"

Premise: The herbaceous layer accounts for the majority of plant biodiversity in eastern North American forests, encompassing substantial variation in life history strategy and function. One group of early-season herbaceous understory species, colloquially referred to as spring ephemeral wildflowers, are ecologically and culturally important, but little is known about the prevalence and biogeographic patterns of the spring ephemeral strategy.

Methods: We used observations collected by the Global Biodiversity Information Facility (GBIF) to quantify the ephemerality of 559 understory forb species across eastern North America and classify them according to a continuous ephemerality index (ranging from 0 = never ephemeral to 1 = always ephemeral).

View Article and Find Full Text PDF

It is well known that exposure to ambient O can decrease growth in many tree species in the United States (US). Our study reports experimental data from outdoor open-top chamber (OTC) studies that quantify total biomass response changes for seedlings of 16 species native to western and eastern North America, which were exposed to several levels of elevated O for one or more years. The primary objective of this study is to establish a reference set of parameters for these seedling exposure-response relationships using a 3-month (92 day) 12-hr W126 O metric used by US Environmental Protection Agency and other agencies to assess risk to trees from O exposure.

View Article and Find Full Text PDF

Engaging students in authentic research increases student knowledge, develops STEM skills, such as data analysis and scientific communication, and builds community. Creating authentic research opportunities in plant biology might be particularly crucial in addressing plant awareness disparity (PAD) (formerly known as plant blindness), producing graduates with botanical literacy, and preparing students for plant-focused careers. Our consortium created four CUREs (course-based undergraduate research experiences) focused on dual themes of plant biology and global change, designed to be utilized by early and late-career undergraduates across a variety of educational settings.

View Article and Find Full Text PDF

Lichens contribute significantly to the biodiversity and functioning of many ecosystems. Although lichens are useful air pollution bioindicators and may respond in significant ways to global change, they are studied infrequently under field conditions in chamberless exposure systems. We surveyed corticolous lichens on paper birch (Betula papyrifera) and trembling aspen (Populus tremuloides) after 10 years exposure (1998-2007) to elevated CO (eCO) and O (eO) in the Aspen-FACE experiment in Rhinelander, WI, USA.

View Article and Find Full Text PDF

Macrophages have been identified as key players within the tumor microenvironment, with classically (M1) and alternatively (M2) activated macrophages exhibiting anti-tumoral and pro-tumoral functions, respectively. The goal of this study was to determine the response of macrophage populations to infection with oncolytic vesicular stomatitis virus (VSV). THP-1 monocytes were differentiated into various macrophage subsets and infected with wild-type (rwt virus) or matrix (M) protein mutant (rM51R-M virus) strains of VSV.

View Article and Find Full Text PDF

Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites.

View Article and Find Full Text PDF

The aquatic bacterium and human intestinal pathogen, , senses and responds to a variety of environment-specific cues to regulate biofilm formation. Specifically, the polyamines norspermidine and spermidine enhance and repress biofilm formation, respectively. These effects are relevant for understanding pathogenicity and are mediated through the periplasmic binding protein NspS and the transmembrane bis-(3'-5') cyclic diguanosine monophosphate (c-di-GMP) phosphodiesterase MbaA.

View Article and Find Full Text PDF

Cutleaf coneflower (Rudbeckia laciniata L. var. digitata) is native to Great Smoky Mountains National Park (GRSM) and an ozone bioindicator species.

View Article and Find Full Text PDF

Ozone-sensitive and -tolerant individuals of cutleaf coneflower (Rudbeckia laciniata L.) were compared for their gas exchange characteristics and total non-structural carbohydrates at Purchase Knob, a high elevation site in Great Smoky Mountains National Park, USA. Photosynthesis and stomatal conductance decreased with increased foliar stipple.

View Article and Find Full Text PDF

Red-stemmed plants are extremely common, yet the functions of cauline anthocyanins are largely unknown. The possibility that photoabatement by anthocyanins in the periderm reduces the propensity for photoinhibition in cortical chlorenchyma was tested for Cornus stolonifera. Anthocyanins were induced in green stems exposed to full sunlight.

View Article and Find Full Text PDF

The ability of the SPAD-502 chlorophyll meter to quantify chlorophyll amounts in ozone-affected leaves of cutleaf coneflower (Rudbeckia laciniata var. digitata) was assessed in this study. When relatively uninjured leaves were measured (percent leaf area affected by stipple less than 6%), SPAD meter readings were linearly related to total chlorophyll with an adjusted R (2) of 0.

View Article and Find Full Text PDF

Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.

View Article and Find Full Text PDF

The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury.

View Article and Find Full Text PDF

Although there has been a great deal of research on ozone, interest in exposure of native, herbaceous species is relatively recent and it is still not clear what role the pollutant has in their ecological fitness. The ozone exposure of a plant is usually expressed in terms of the concentration above the canopy or as a time-weighted index. However, to understand the physiological effects of ozone it is necessary to quantify the ozone flux to individual leaves as they develop, which requires knowing the deposition velocity and concentration of the pollutant as a function of height throughout the plant canopy.

View Article and Find Full Text PDF