Publications by authors named "Howard R Morris"

Arriving at the University of Virginia in the autumn of 1969, Donald Hunt began his 50+ year career in academics with the study of organometallic chemistry, on which he had done his PhD thesis work, and mass spectrometry, to which he was introduced while a postdoc in Klaus Biemann's laboratory at the Massachusetts Institute of Technology. In the 1970s, Hunt's lab pioneered the use of negative chemical ionization (CI) to enhance sensitivity for studying organic molecules, developed a system for simultaneously obtaining positive and negative CI spectra to augment structure elucidation, and built a prototype triple quadrupole instrument so effective at collisional dissociation that its commercial counterpart became the analytical instrument of choice for mixture analysis for the next decade and beyond. Foreseeing that the future lay in the analysis of biological molecules, by the end of the decade Hunt shifted his focus to peptides.

View Article and Find Full Text PDF

Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.

View Article and Find Full Text PDF

The novel coronavirus SARS-CoV-2, the infective agent causing COVID-19, is having a global impact both in terms of human disease as well as socially and economically. Its heavily glycosylated spike glycoprotein is fundamental for the infection process, via its receptor-binding domains interaction with the glycoprotein angiotensin-converting enzyme 2 on human cell surfaces. We therefore utilized an integrated glycomic and glycoproteomic analytical strategy to characterize both N- and O- glycan site-specific glycosylation within the receptor-binding domain.

View Article and Find Full Text PDF

Glycosylation of flagellins is a well recognized property of many bacterial species. In this study, we describe the structural characterization of novel flagellar glycans from a number of hypervirulent strains of C. difficile We used mass spectrometry (nano-LC-MS and MS/MS analysis) to identify a number of putative glycopeptides that carried a variety of glycoform substitutions, each of which was linked through an initial N-acetylhexosamine residue to Ser or Thr.

View Article and Find Full Text PDF

Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying type B flagellin in the 023 and 027 hypervirulent C.

View Article and Find Full Text PDF

The surface envelope glycoprotein (SU) of Human immunodeficiency virus type 1 (HIV-1), gp120(SU) plays an essential role in virus binding to target CD4+ T-cells and is a major vaccine target. Gp120 has remarkably high levels of N-linked glycosylation and there is considerable evidence that this "glycan shield" can help protect the virus from antibody-mediated neutralization. In recent years, however, it has become clear that gp120 glycosylation can also be included in the targets of recognition by some of the most potent broadly neutralizing antibodies.

View Article and Find Full Text PDF

Glycans serve as important regulators of antibody activities and half-lives. IgE is the most heavily glycosylated antibody, but in comparison to other antibodies little is known about its glycan structure function relationships. We therefore describe the site specific IgE glycosylation from a patient with a novel hyper IgE syndrome linked to mutations in PGM3, which is an enzyme involved in synthesizing UDP-GlcNAc, a sugar donor widely required for glycosylation.

View Article and Find Full Text PDF

As HIV-1-encoded envelope protein traverses the secretory pathway, it may be modified with N- and O-linked carbohydrate. When the gp120s of HIV-1 NL4-3, HIV-1 YU2, HIV-1 Bal, HIV-1 JRFL, and HIV-1 JRCSF were expressed as secreted proteins, the threonine at consensus position 499 was found to be O-glycosylated. For SIVmac239, the corresponding threonine was also glycosylated when gp120 was recombinantly expressed.

View Article and Find Full Text PDF

Recently, the S-layer protein of Sulfolobus acidocaldarius was shown to be N-linked with a tribranched hexasaccharide, composed of Man2Glc1GlcNAc2 and a sulfated sugar called sulfoquinovose. To identify genes involved in the biosynthesis and attachment of this glycan, markerless in-frame deletions of genes coding for predicted glycosyltransferases were created. The successful deletion of agl16, coding for a glycosyltransferase, resulted in the S-layer protein and archaellins having reduced molecular weights, as visualized by Coomassie staining or immunoblotting.

View Article and Find Full Text PDF

vWF (von Willebrand factor) is a key component for maintenance of normal haemostasis, acting as the carrier protein of the coagulant Factor VIII and mediating platelet adhesion at sites of vascular injury. There is ample evidence that vWF glycan moieties are crucial determinants of its expression and function. Of particular clinical interest, ABH antigens influence vWF plasma levels according to the blood group of individuals, although the molecular mechanism underlying this phenomenon remains incompletely understood.

View Article and Find Full Text PDF

α-Dystroglycan (DG) is a key component of the dystrophin-glycoprotein complex. Aberrant glycosylation of the protein has been linked to various forms of congenital muscular dystrophy. Unusually α-DG has previously been demonstrated to be modified with both O-N-acetylgalactosamine and O-mannose initiated glycans.

View Article and Find Full Text PDF

Recently, the Surface (S)-layer glycoprotein of the thermoacidophilic crenarchaeote Sulfolobus acidocaldarius was found to be N-glycosylated with a heterogeneous family of glycans, with the largest having a composition Glc(1)Man(2)GlcNAc(2) plus 6-sulfoquinovose. However, genetic analyses of genes involved in the N-glycosylation process in Crenarchaeota were missing so far. In this study we identify a gene cluster involved in the biosynthesis of sulfoquinovose and important for the assembly of the S-layer N-glycans.

View Article and Find Full Text PDF

DC-SIGN is an immune C-type lectin that is expressed on both immature and mature dendritic cells associated with peripheral and lymphoid tissues in humans. It is a pattern recognition receptor that binds to several pathogens including HIV-1, Ebola virus, Mycobacterium tuberculosis, Candida albicans, Helicobacter pylori, and Schistosoma mansoni. Evidence is now mounting that DC-SIGN also recognizes endogenous glycoproteins, and that such interactions play a major role in maintaining immune homeostasis in humans and mice.

View Article and Find Full Text PDF

Human fertilization begins when spermatozoa bind to the extracellular matrix coating of the oocyte, known as the zona pellucida (ZP). One spermatozoan then penetrates this matrix and fuses with the egg cell, generating a zygote. Although carbohydrate sequences on the ZP have been implicated in sperm binding, the nature of the ligand was unknown.

View Article and Find Full Text PDF

Protein S has an important anticoagulant function by acting as a cofactor for activated protein C (APC). We recently reported that the EGF1 domain residue Asp95 is critical for APC cofactor function. In the present study, we examined whether additional interaction sites within the Gla domain of protein S might contribute to its APC cofactor function.

View Article and Find Full Text PDF

Glucose-6-phosphatase, an enzyme localized in the endoplasmic reticulum (ER), catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and inorganic phosphate. In humans, there are three differentially expressed glucose-6-phosphatase catabolic genes (G6PC1-3). Recently, it has been shown that mutations in the G6PC3 gene result in a syndrome associating congenital neutropenia and various organ malformations.

View Article and Find Full Text PDF

Objective: Gestational diabetes mellitus (GDM) is a common metabolic disorder of pregnancy. Patients with GDM are at risk for high fetal mortality and gestational complications associated with reduced immune tolerance and abnormal carbohydrate metabolism. Glycodelin-A (GdA) is an abundant decidual glycoprotein with glycosylation-dependent immunomodulatory activities.

View Article and Find Full Text PDF

Glycosylation of the S-layer of the crenarchaea Sulfolobus acidocaldarius has been investigated using glycoproteomic methodologies. The mature protein is predicted to contain 31 N-glycosylation consensus sites with approximately one third being found in the C-terminal domain spanning residues L(1004)-Q(1395). Since this domain is rich in Lys and Arg and therefore relatively tractable to glycoproteomic analysis, this study has focused on mapping its N-glycosylation.

View Article and Find Full Text PDF

Nipah virus targets human endothelial cells via NiV-F and NiV-G envelope glycoproteins, resulting in endothelial syncytia formation and vascular compromise. Endothelial cells respond to viral infection by releasing innate immune effectors, including galectins, which are secreted proteins that bind to specific glycan ligands on cell surface glycoproteins. We demonstrate that galectin-1 reduces NiV-F mediated fusion of endothelial cells, and that endogenous galectin-1 in endothelial cells is sufficient to inhibit syncytia formation.

View Article and Find Full Text PDF

The first bacterial N-linked glycosylation system was discovered in Campylobacter jejuni, and the key enzyme involved in the coupling of glycan to asparagine residues within the acceptor sequon of the glycoprotein is the oligosaccharyltransferase PglB. Emerging genome sequence data have revealed that pglB orthologues are present in a subset of species from the Deltaproteobacteria and Epsilonproteobacteria, including three Helicobacter species: H. pullorum, H.

View Article and Find Full Text PDF

The hyaluronic acid receptor for endocytosis (HARE)/Stabilin-2 is the primary systemic scavenger receptor for 13 ligands including hyaluronan (HA), heparin and chondroitin sulfates. Most ligand-binding sites are within the 190 kDa isoform, which contains approximately 25 kDa of N-glycans and is the C-terminal half of the full-length 315 kDa HARE. Glycoproteomic analyses of purified recombinant human 190-HARE ecto-domain identified a diverse population of glycans at 10 of 17 consensus sites.

View Article and Find Full Text PDF

The Campylobacter jejuni flagellin protein is O-glycosylated with structural analogues of the nine-carbon sugar pseudaminic acid. The most common modifications in the C. jejuni 81-176 strain are the 5,7-di-N-acetylated derivative (Pse5Ac7Ac) and an acetamidino-substituted version (Pse5Am7Ac).

View Article and Find Full Text PDF

Insect seminal fluid proteins are powerful modulators of many aspects of female physiology and behaviour including longevity, egg production, sperm storage, and remating. The crucial role of these proteins in reproduction makes them promising targets for developing tools aimed at reducing the population sizes of vectors of disease. In the malaria mosquito Anopheles gambiae, seminal secretions produced by the male accessory glands (MAGs) are transferred to females in the form of a coagulated mass called the mating plug.

View Article and Find Full Text PDF

N-Acetylglucosaminyltransferase-IV (GnT-IV) has two isoenzymes, GnT-IVa and GnT-IVb, which initiate the GlcNAcbeta1-4 branch synthesis on the Manalpha1-3 arm of the N-glycan core thereby increasing N-glycan branch complexity and conferring endogenous lectin binding epitopes. To elucidate the physiological significance of GnT-IV, we engineered and characterized GnT-IVb-deficient mice and further generated GnT-IVa/-IVb double deficient mice. In wild-type mice, GnT-IVa expression is restricted to gastrointestinal tissues, whereas GnT-IVb is broadly expressed among organs.

View Article and Find Full Text PDF

A recent analysis of the human sperm N-glycome confirmed the expression of biantennary bisecting type N-glycans and terminal Lewis(x)/Lewis(y) sequences previously implicated in the suppression of the innate and adaptive immune responses, respectively. In this study, glycomic analysis of seminal plasma glycoproteins derived from four fertile men was carried out to determine if the same sequences were expressed on the N- and O-glycome of human seminal plasma glycoproteins. Three major families of N-glycans were detected: (i) high mannose glycans (Man(5-7)GlcNAc(2)); (ii) bi-, tri-, and tetraantennary core-fucosylated complex type N-glycans with antennae terminated with Lewis(x) and/or Lewis(y) sequences; and (iii) bi-, tri-, and tetraantennary core-fucosylated complex type N-glycans with antennae capped with sialic acid.

View Article and Find Full Text PDF