We report the fabrication and characterization of a plasmonic metasurface comprising electrically-contacted sub-wavelength gold dipole nanoantennas, conformally coated by a thin hafnia film, an indium tin oxide layer and a backside mirror, forming metal-oxide-semiconductor (MOS) capacitors, for use as an electrically-tunable reflectarray or metasurface. By voltage biasing the nanoantennas through metallic connectors and leveraging the carrier refraction effect in the MOS capacitors, our measurements demonstrate phase control in reflection over a range of about 30°, with a constant magnitude of reflection coefficient of 0.5, and the absence of secondary lobes.
View Article and Find Full Text PDFThe symmetry of achiral metasurfaces suggests selective absorption is nonexistent when irradiated either by circularly polarized Gaussian or twisted light beams carrying orbital angular momentum (OAM). In chiral metasurfaces, the lack of symmetry leads to differential absorption when probed with chiral light either in the form of circular polarization (circular dichroism) or helical phase fronts (helical dichroism). Here, we demonstrate differential absorption of asymmetric twisted light beams, known as helical dichroism, which exist in an array and a single achiral structure and can be controlled.
View Article and Find Full Text PDFPlasmonic catalysis holds promise for opening new reaction pathways inaccessible thermally or for improving the efficiency of chemical processes. We report a gold stripe waveguide along which infrared (λ ~ 1350 nanometers) surface plasmon polaritons (SPPs) propagate, operating simultaneously as an electrochemical working electrode. Cyclic voltammograms obtained under SPP excitation enable oxidative processes involving energetic holes to be investigated separately from reductive processes involving energetic electrons.
View Article and Find Full Text PDFLong-range surface plasmon polariton waveguides consisting of Au stripes integrated with input and output grating couplers embedded in thick Cytop claddings are proposed and demonstrated experimentally. Under the right conditions, grating couplers enable broadside (top) coupling with good efficiency while producing a low level of background light. The scheme does not require high-quality input and output edge facets, and it simplifies optical alignments.
View Article and Find Full Text PDFIn last few decades, micro- and nano-fabrication techniques based on photolithography and electron beam lithography have advanced greatly, mainly in the field of semiconductor fabrication. Such techniques are generally transferrable to the fabrication of plasmonic structures and metamaterials. However, plasmonic devices often require a transparent insulating substrate to be operational at visible or near-infrared wavelengths.
View Article and Find Full Text PDF