Publications by authors named "Howard Kutchai"

Background: Phospholemman (PLM) is an abundant phosphoprotein in the plasma membrane of cardiac, skeletal and smooth muscle. It is a member of the FXYD family of proteins that bind to and regulate the Na,K-ATPase. Protein kinase A (PKA) is known to phosphorylate PLM on serine 68 (S68), although the functional effect of S68 PLM phosphorylation is unclear.

View Article and Find Full Text PDF

Cardiac sympathetic stimulation activates beta-adrenergic (beta-AR) receptors and protein kinase A (PKA) phosphorylation of proteins involved in myocyte Ca regulation. The Na/K-ATPase (NKA) is essential in regulating intracellular [Na] ([Na]i), which in turn affects [Ca]i via Na/Ca exchange. However, how PKA modifies NKA function is unknown.

View Article and Find Full Text PDF

Activation of cardiac muscle sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) by beta1-agonists involves cAMP- and PKA-dependent phosphorylation of phospholamban (PLB), which relieves the inhibitory effects of PLB on SERCA2a. To investigate the mechanism of SERCA2a activation, we compared the kinetic properties of SERCA2a expressed with (+) and without (-) PLB in High Five insect cell microsomes to those of SERCA1 and SERCA2a in native skeletal and cardiac muscle SR. Both native SERCA1 and expressed SERCA2a without PLB exhibited high-affinity (10-50 microM) activation of pre-steady-state catalytic site dephosphorylation by ATP, steady-state accumulation of the ADP-sensitive phosphoenzyme (E1P), and a rapid phase of EGTA-induced phosphoenzyme (E2P) hydrolysis.

View Article and Find Full Text PDF

We used fluorescence resonance energy transfer (FRET) to detect and quantitate the interaction of the sarcoplasmic reticulum Ca-ATPase (SERCA) with phospholamban (PLB) in membranes. PLB inhibits SERCA only at submicromolar Ca. It has been proposed that relief of inhibition at micromolar Ca is due to dissociation of the inhibitory complex.

View Article and Find Full Text PDF

Myotonic muscular dystrophy (DM) is characterized by abnormal skeletal muscle Na channel gating and reduced levels of myotonic dystrophy protein kinase (DMPK). Electrophysiological measurements show that mice deficient in Dmpk have reduced Na currents in muscle. We now find that the Na channel expression level is normal in mouse muscle partially or completely deficient in Dmpk.

View Article and Find Full Text PDF