Chronic exposure to high glucose leads to diabetic nephropathy characterized by increased mesangial matrix protein (e.g., collagen) accumulation.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor (PPARgamma), a ligand-dependent transcription factor, negatively modulates high glucose effects. We postulated that rosiglitazone (RSG), an activator of PPARgamma prevents the upregulation of vascular endothelial growth factor (VEGF) and collagen IV by mesangial cells exposed to high glucose. Primary cultured rat mesangial cells were growth-arrested in 5.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
December 2008
Conversion of normally quiescent mesangial cells into extracellular matrix-overproducing myofibroblasts in response to high ambient glucose and transforming growth factor (TGF)-beta(1) is central to the pathogenesis of diabetic nephropathy. Previously, we reported that mesangial cells respond to high glucose by generating reactive oxygen species (ROS) from NADPH oxidase dependent on protein kinase C (PKC) -zeta activation. We investigated the role of TGF-beta(1) in this action of high glucose on primary rat mesangial cells within 1-48 h.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) is implicated in the development of proteinuria in diabetic nephropathy. High ambient glucose present in diabetes stimulates VEGF expression in several cell types, but the molecular mechanisms are incompletely understood. Here primary cultured rat mesangial cells served as a model to investigate the signal transduction pathways involved in high-glucose-induced VEGF expression.
View Article and Find Full Text PDFMetabolic flux through the hexosamine biosynthetic pathway (HBP) is increased in the presence of high glucose (HG) and potentially stimulates the expression of genes associated with the development of diabetic nephropathy. A number of synthetic processes are coupled to the HBP, including enzymatic intracellular O-glycosylation (O-GlcNAcylation), the addition of single O-linked N-acetylglucosamine monosaccharides to serine or threonine residues. Despite much data linking flow through the HBP and gene expression, the exact contribution of O-GlcNAcylation to HG-stimulated gene expression remains unclear.
View Article and Find Full Text PDFBackground: We postulated that in mesangial cells exposed to high glucose, protein kinase C-zeta (PKC-zeta) is necessary for the generation of reactive oxygen species (ROS) by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and that the requirement of PKC-zeta for filamentous (F)-actin disassembly may involve ROS. To identify signaling mechanisms relevant to PKC-zeta activation and ROS generation, including phosphoinositide 3 kinase (PI3 kinase), we examined mesangial cell stimulation with platelet-derived growth factor (PDGF).
Methods: In primary rat mesangial cells cultured in 5.
Increased flux through the hexosamine biosynthesis pathway (HBP) has been shown to stimulate the expression of a number of genes. We previously demonstrated in glomerular mesangial and endothelial cells that both high glucose concentrations and glucosamine activated the plasminogen activator inhibitor-1 (PAI-1) gene promoter through the transcription factor, Sp1; and that the glutamine:fructose-6-phosphate amidotransferase inhibitor, 6-diazo-5-oxonorleucine, inhibited the effect of high glucose, but not that of glucosamine. Here, we examined the role of protein kinase C (PKC) isoforms in the regulation of the PAI-1 promoter and Sp1 transcriptional activity by the HBP.
View Article and Find Full Text PDFTransforming growth factor-beta (TGF-beta) is a bimodal regulator of cellular growth. The cellular effects of TGF-beta depend on the intensity of signals emanating from TGF-beta receptors. Low levels of receptor activity are sufficient to stimulate cell proliferation, while higher degrees of receptor activation are associated with growth inhibition.
View Article and Find Full Text PDFIn high glucose (HG), mesangial cells (MCs) lose their contractile response to endothelin-1 (ET-1) coincidently with filamentous (F)-actin disassembly. We postulated that these MC phenotypic changes are mediated by altered protein kinase C (PKC) isozyme activity, myosin light chain (MLC(20)) phosphorylation, or Ca(2+) signaling. MCs were growth arrested for 24 h in 0.
View Article and Find Full Text PDF