Publications by authors named "Howard H Chen"

Autophagy is a key biological process that has proven extremely difficult to detect noninvasively. To address this, an autophagy detecting nanoparticle (ADN) was recently developed, consisting of an iron oxide nanoparticle decorated with cathepsin-cleavable arginine-rich peptides bound to the near-infrared fluorochrome Cy5.5.

View Article and Find Full Text PDF
Article Synopsis
  • Heart failure (HF) is a common heart problem, but scientists don't completely understand why it happens.
  • A specific splicing factor called hnRNPL gets more active in the hearts of mice and people with heart failure.
  • Researchers found that hnRNPL helps control how certain proteins are made in heart cells, and problems with it could contribute to heart failure.
View Article and Find Full Text PDF

Background: Obese and pre-diabetic women have a higher risk for cardiovascular death than age-matched men with the same symptoms, and there are no effective treatments. We reported that obese and pre-diabetic female Zucker Diabetic Fatty (ZDF-F) rats recapitulate metabolic and cardiac pathology of young obese and pre-diabetic women and exhibit suppression of cardio-reparative AT2R. Here, we investigated whether NP-6A4, a new AT2R agonist with the FDA designation for pediatric cardiomyopathy, mitigate heart disease in ZDF-F rats by restoring AT2R expression.

View Article and Find Full Text PDF

Chemotherapy-induced impairment of autophagy is implicated in cardiac toxicity induced by anti-cancer drugs. Imperfect translation from rodent models and lack of in vitro models of toxicity has limited investigation of autophagic flux dysregulation, preventing design of novel cardioprotective strategies based on autophagy control. Development of an adult heart tissue culture technique from a translational model will improve investigation of cardiac toxicity.

View Article and Find Full Text PDF

Autophagy-the lysosomal degradation of cytoplasmic components via their sequestration into double-membraned autophagosomes-has not been detected non-invasively. Here we show that the flux of autophagosomes can be measured via magnetic resonance imaging or serial near-infrared fluorescence imaging of intravenously injected iron oxide nanoparticles decorated with cathepsin-cleavable arginine-rich peptides functionalized with the near-infrared fluorochrome Cy5.5 (the peptides facilitate the uptake of the nanoparticles by early autophagosomes, and are then cleaved by cathepsins in lysosomes).

View Article and Find Full Text PDF

Wound infection by multidrug-resistant (MDR) bacteria is a major disease burden. Systemic administration of broad-spectrum antibiotics colistin methanesulfonate (CMS) and vancomycin are the last lines of defense against deep wound infections by MDR bacteria. However, systemic administration of CMS and vancomycin are linked to life-threatening vital organ damage.

View Article and Find Full Text PDF

During newborn lung injury, excessive activity of lysyl oxidases (LOXs) disrupts extracellular matrix (ECM) formation. Previous studies indicate that TGFβ activation in the O-injured mouse pup lung increases lysyl oxidase (LOX) expression. But how TGFβ regulates this, and whether the LOXs generate excess pulmonary aldehydes are unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Multiplexed imaging is crucial for studying how organs like the heart and brown adipose tissue utilize different substrates, especially under certain health conditions.
  • Optical imaging is beneficial due to its affordability, efficiency, and ability to provide multiple data types, but the lack of suitable probes has limited its use in measuring substrate metabolism.
  • A new near-infrared tracer called AlexaFFA has been developed, which allows for in vivo imaging and quantification of free fatty acid uptake in deep tissues, showing significant increases in uptake during conditions like fasting and cold exposure in both the heart and brown adipose tissue.
View Article and Find Full Text PDF

Chronological aging as well as biological aging accelerated by various pathologies such as diabetes and obesity contribute to cardiovascular aging, and structural and functional tissue damage of the heart and vasculature. Cardiovascular aging in humans is characterized by structural pathologic remodeling including cardiac and vascular fibrosis, hypertrophy, stiffness, micro- and macro-circulatory impairment, left ventricular diastolic dysfunction precipitating heart failure with either reduced or preserved ejection fraction, and cardiovascular cell death. Cellular senescence, an important hallmark of aging, is a critical factor that impairs repair and regeneration of damaged cells in cardiovascular tissues whereas autophagy, an intracellular catabolic process is an essential inherent mechanism that removes senescent cells throughout life time in all tissues.

View Article and Find Full Text PDF

Background: Substrate utilization in tissues with high energetic requirements could play an important role in cardiometabolic disease. Current techniques to assess energetics are limited by high cost, low throughput, and the inability to resolve multiple readouts simultaneously. Consequently, we aimed to develop a multiplexed optical imaging platform to simultaneously assess energetics in multiple organs in a high throughput fashion.

View Article and Find Full Text PDF

Anthracyclines such as doxorubicin are highly effective chemotherapy agents used to treat many common malignancies. However, their use is limited by cardiotoxicity. We previously identified visnagin as protecting against doxorubicin toxicity in cardiac but not tumor cells.

View Article and Find Full Text PDF

Fibrogenesis is the active production of extracellular matrix in response to tissue injury. In many chronic diseases persistent fibrogenesis results in the accumulation of scar tissue, which can lead to organ failure and death. However, no non-invasive technique exists to assess this key biological process.

View Article and Find Full Text PDF

Fibrosis results from the dysregulation of tissue repair mechanisms affecting major organ systems, leading to chronic extracellular matrix buildup, and progressive, often fatal, organ failure. Current diagnosis relies on invasive biopsies. Noninvasive methods today cannot distinguish actively progressive fibrogenesis from stable scar, and thus are insensitive for monitoring disease activity or therapeutic responses.

View Article and Find Full Text PDF

Extracellular nucleic acids are proinflammatory molecules that have been implicated in a diverse range of diseases. We report here the development of a multivalent nucleic acid scavenging nanoprobe, where the fluorochrome thiazole orange (TO) is conjugated to a polymeric 40 kDa dextran carrier. Dextran-TO (Dex-TO) has nanomolar affinity for mammalian and bacterial nucleic acids and attenuates the production of inflammatory cytokines from activated macrophages exposed to DNA and RNA.

View Article and Find Full Text PDF

Myocardial infarction leads to complex changes in the fiber architecture of the heart. Here, we present a novel optical approach to characterize these changes in intact hearts in three dimensions. Optical coherence tomography (OCT) was used to derive a depth-resolved field of orientation on which tractography was performed.

View Article and Find Full Text PDF

Recent studies have suggested that brown adipose tissue (BAT) plays an important role in obesity, insulin resistance and heart failure. The characterization of BAT in vivo, however, has been challenging. No technique to comprehensively image BAT anatomy and function has been described.

View Article and Find Full Text PDF

Heat-induced radiolabeling (HIR) yielded (89) Zr-Feraheme (FH) nanoparticles (NPs) that were used to determine NP pharmacokinetics (PK) by positron emission tomography (PET). Standard uptake values indicated a fast hepatic uptake that corresponded to blood clearance, and a second, slow uptake process by lymph nodes and spleen. By cytometry, NPs were internalized by circulating monocytes and monocytes in vitro.

View Article and Find Full Text PDF

Objectives: Cell death in lymphatic organs, such as the spleen, is in part responsible for immunosuppression and contributes to mortality during sepsis. An early and noninvasive detection of lymphoid cell death could thus have significant clinical implications. Here, we tested in vivo imaging of lymphoid cell death using a near-infrared annexin V (AV-750).

View Article and Find Full Text PDF

We synthesized a cytoprotective magnetic nanoparticle by reacting a maleimide functionalized Feraheme (FH) with a disulfide linked dimer of a polyhis tagged annexin V. Following reductive cleavage of disulfide, the resulting annexin-nanoparticle (diameter = 28.0 ± 2.

View Article and Find Full Text PDF

Doxorubicin is a highly effective anticancer chemotherapy agent, but its use is limited by its cardiotoxicity. To develop a drug that prevents this toxicity, we established a doxorubicin-induced cardiomyopathy model in zebrafish that recapitulates the cardiomyocyte apoptosis and contractility decline observed in patients. Using this model, we screened 3000 compounds and found that visnagin (VIS) and diphenylurea (DPU) rescue the cardiac performance and circulatory defects caused by doxorubicin in zebrafish.

View Article and Find Full Text PDF

Annexin A5 (Anx) has been extensively used for imaging apoptosis by single-photon emission computed tomography, positron emission tomography, optical imaging and MRI. Recently we introduced ultrasmall Anx-VSOP (very small iron oxide particles)--the smallest high-relaxivity probe for MRI of apoptosis. Here we present a simplified method for the direct coupling of Anx to VSOP, which resulted in nanoparticles that are nearly completely covered with human Anx.

View Article and Find Full Text PDF

Background: The arrangement of myofibers in the heart is highly complex and must be replicated by injected cells to produce functional myocardium. A novel approach to characterize the microstructural response of the myocardium to ischemia and cell therapy, with the use of serial diffusion tensor magnetic resonance imaging tractography of the heart in vivo, is presented.

Methods And Results: Validation of the approach was performed in normal (n=6) and infarcted mice (n=6) as well as healthy human volunteers.

View Article and Find Full Text PDF

Background: Toll-like receptor 3 (TLR3) was originally identified as the receptor for viral RNA and represents a major host antiviral defense mechanism. TLR3 may also recognize extracellular RNA (exRNA) released from injured tissues under certain stress conditions. However, a role for exRNA and TLR3 in the pathogenesis of myocardial ischemic injury has not been tested.

View Article and Find Full Text PDF

Triphenylphosphonium-fluorochromes (TPP-fluorochromes) are a new class of spectrally variable, mitochondrially targeted probes, with an [(18)F] labeling option which, when enabled, allows imaging of a cardiac perfusion deficit using PET/CT.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis is a chronic, progressive, fibrosing interstitial pneumonia of unknown cause resulting in dyspnea and functional decline until death. There are currently no effective noninvasive tools to monitor disease progression and response to treatment. The objective of the present study was to determine whether molecular magnetic resonance imaging of the lung using a probe targeted to type I collagen could provide a direct, noninvasive method for assessment of pulmonary fibrosis in a mouse model.

View Article and Find Full Text PDF