Publications by authors named "Howard H Carter"

Purpose: Recent studies suggest that episodic increases in cerebral blood flow (CBF) may contribute to the improvement in brain health associated with exercise training. Optimising CBF during exercise may enhance this benefit. Water immersion in ~ 30-32 °C augments CBF at rest and during exercise; however, the impact of water temperature on the CBF response has not been investigated.

View Article and Find Full Text PDF
Article Synopsis
  • High-altitude trekking negatively affects upper limb blood flow and reduces vascular function in individuals not acclimated to low oxygen levels.
  • A study investigated the effects of 20 minutes of oxygen supplementation on brachial artery hemodynamics at various altitudes ranging from 3,440 m to 5,050 m in participants aged 21-42 years.
  • Results showed that while oxygen supplementation reduced blood flow and artery diameter at lower altitudes, it had a less pronounced effect at higher altitudes, indicating that vascular responses vary with altitude exposure duration and severity.
View Article and Find Full Text PDF

Flow-mediated dilation (FMD) provides a valid bioassay of vascular function in humans. Although water immersion induces hemodynamic effects that modify brachial artery shear stress, it is unclear whether water-based exercise modifies FMD. We hypothesized that exercise in 32°C water would decrease brachial artery shear and FMD relative to land-based exercise, whereas exercise in 38°C would increase brachial shear and FMD.

View Article and Find Full Text PDF

Heart failure (HF) is characterised by abnormal conduit and resistance artery function in humans. Microvascular function in HF is less well characterised, due in part to the lack of tools to image these vessels in vivo. The skin microvasculature is a surrogate for systemic microvascular function and health and plays a key role in thermoregulation, which is dysfunctional in HF.

View Article and Find Full Text PDF

Background: Humans display an age-related decline in cerebral blood flow and increase in blood pressure (BP), but changes in the underlying control mechanisms across the lifespan are less well understood. We aimed to; (1) examine the impact of age, sex, cardiovascular disease (CVD) risk, and cardio-respiratory fitness on dynamic cerebral autoregulation and cardiac baroreflex sensitivity, and (2) explore the relationships between dynamic cerebral autoregulation (dCA) and cardiac baroreflex sensitivity (cBRS).

Methods: 206 participants aged 18-70 years were stratified into age categories.

View Article and Find Full Text PDF

It is generally considered that regular exercise maintains brain health and reduces the risk of cerebrovascular diseases such as stroke and dementia. Since the benefits of different "types" of exercise are unclear, we sought to compare the impacts of endurance and resistance training on cerebrovascular function. In a randomized and crossover design, 68 young healthy adults were recruited to participate in 3 mo of resistance and endurance training.

View Article and Find Full Text PDF

The aim of this study was to determine the effect of a period of aerobic high intensity training on central- and peripheral cardiovascular parameters in older post-menopausal women. Eleven healthy post-menopausal (>10 years after menopause) women (mean age: 64 years; BMI: 25.3 kg m) completed an 8-week period of supervised, high intensity cycle training, with sessions conducted three times per week.

View Article and Find Full Text PDF
Article Synopsis
  • The study involved 63 older adults undergoing either land walking, water walking, or no exercise for 24 weeks to explore how exercise affects blood flow in the brain.
  • Results showed no significant changes in overall blood flow velocities or neurovascular coupling for either exercise group, although water walking improved cerebral autoregulation slightly.
  • The findings suggest that while exercise doesn't result in major changes in cerebrovascular function, it may lead to modest improvements and highlights the need for more research into exercise's long-term effects on brain health.
View Article and Find Full Text PDF

Introduction: Exercise training has antiatherogenic effects on conduit and resistance artery function and structure in humans and induces angiogenic changes in skeletal muscle. However, training-induced adaptation in cutaneous microvessels is poorly understood, partly because of technological limitations. Optical coherence tomography (OCT) is a novel high-resolution imaging technique capable of visualizing cutaneous microvasculature at a resolution of ~30 μm.

View Article and Find Full Text PDF

Background: Repeated exposure to remote ischaemic preconditioning (rIPC; short bouts of non-lethal ischaemia) enhances peripheral vascular function within 1 week; whereas, longer periods of rIPC (~ 1 year) may improve cerebral perfusion. Increasing the 'dose' of rIPC may lead to superior effects. Given the similarities between exercise and rIPC, we examined whether adding exercise to the rIPC stimulus leads to greater adaptation in systemic vascular function.

View Article and Find Full Text PDF

The pathophysiology and time course of impairment in cutaneous microcirculatory function and structure remain poorly understood in people with diabetes, partly due to the lack of investigational tools capable of directly imaging and quantifying the microvasculature in vivo. We applied a new optical coherence tomography (OCT) technique, at rest and during reactive hyperemia (RH), to assess the skin microvasculature in people with diabetes with foot ulcers (DFU, = 13), those with diabetes without ulcers (DNU, = 9), and matched healthy controls (CON, = 13). OCT images were obtained from the dorsal part of the foot at rest and following 5 min of local ischemia induced by inflating a cuff around the thigh at suprasystolic level (220 mmHg).

View Article and Find Full Text PDF

Introduction: The pathophysiology of microvascular disease is poorly understood, partly due to the lack of tools to directly image microvessels in vivo.

Research Design And Methods: In this study, we deployed a novel optical coherence tomography (OCT) technique during local skin heating to assess microvascular structure and function in diabetics with (DFU group, n=13) and without (DNU group, n=10) foot ulceration, and healthy controls (CON group, n=13). OCT images were obtained from the dorsal foot, at baseline (33°C) and 30 min following skin heating.

View Article and Find Full Text PDF

Purpose: Endothelial dysfunction is an early and integral atherogenic event. Interventions that improve endothelial function also reduce cardiovascular risk. Due largely to the direct hemodynamic effects of repetitive exercise on the artery wall, exercise training has shown to enhance endothelial function.

View Article and Find Full Text PDF

Background: Low cardiorespiratory fitness is an independent predictor of all-cause and cardiovascular mortality, and interventions that increase fitness reduce risk. Water-walking decreases musculoskeletal impact and risk of falls in older individuals, but it is unclear whether water-walking improves aerobic fitness in the same way as weight-dependent land-walking. This randomized controlled trial involved 3 intervention groups-a no-exercise control group (CG), a land-walking (LW) group, and a water-walking (WW) group-to investigate the comparative impacts of LW and WW to CG on fitness.

View Article and Find Full Text PDF

The aim of this study was to assess the effect of exercise intensity on the thermal sensory function of active and inactive limbs. In a randomised and counterbalanced manner, 13 healthy young male participants (25 ± 6 years, 1.8 ± 0.

View Article and Find Full Text PDF

Purpose: Remote ischaemic preconditioning (RIPC) refers to the protection conferred to tissues and organs via brief periods of ischaemia in a remote vascular territory, including the brain. Recent studies in humans report that RIPC provides neuroprotection against recurrent (ischaemic) stroke. To better understand the ability of RIPC to improve brain health, the present study explored the potential for RIPC to acutely improve cerebrovascular function.

View Article and Find Full Text PDF

The mechanisms underlying reactive hyperemia (RH) responses in microvessels are poorly understood. Previous assessment tools have not been capable of directly visualizing microvessels during physiological stimulation in humans. Optical coherence tomography (OCT) is capable of imaging and quantifying subcutaneous microvessels as small as ~30 µm.

View Article and Find Full Text PDF

Background: Remote ischaemic preconditioning (rIPC) may improve cardiac/cerebrovascular outcomes of ischaemic events. Ischaemic damage caused by cardiovascular/cerebrovascular disease are primary causes of mortality in type 2 diabetes mellitus (T2DM). Due to the positive effects from a bout of rIPC within the vasculature, we explored if daily rIPC could improve endothelial and cerebrovascular function.

View Article and Find Full Text PDF

Introduction: The study evaluated the role of lifelong physical activity for leg vascular function in postmenopausal women (61 ± 1 yr).

Method: The study design was cross-sectional with three different groups based on self-reported physical activity level with regard to intensity and volume over the past decade: inactive (n = 14), moderately active (n = 12), and very active (n = 15). Endothelial-dependent and smooth muscle-dependent leg vascular function were assessed by ultrasound Doppler measurements of the femoral artery during infusion of acetylcholine (Ach), the nitric oxide (NO) donor sodium nitroprusside and the prostacyclin analog epoprostenol.

View Article and Find Full Text PDF

William Harvey proved the circulation of blood 400 years ago using a combination of ligature application and astute observation that presaged the existence of capillaries. Here we report findings, based on our development of a novel application of optical coherence tomography (OCT), that directly confirm the impact of cuff inflation on microvessels as small as ~30µm. By emulating Harvey's proofs, using cuff inflation at low pressure in the presence and absence of skin heating, we have imaged and quantified significant effects on microvascular diameter and density in humans in vivo.

View Article and Find Full Text PDF

Objectives: Increasing physical activity is a priority worldwide, including for older adults who may have difficulty performing traditional forms of exercise, and for whom retention of muscle mass is an important consideration. Water-based exercise may provide an alternative if benefits are comparable. We compared the impact on body composition of 24-week water- versus land-walking interventions in healthy but inactive older adults.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? The aim was to evaluate the degree to which increases in haematocrit alter cerebral blood flow and cerebral oxygen delivery during acclimatization to high altitude. What is the main finding and its importance? Through haemodilution, we determined that, after 1 week of acclimatization, the primary mechanism contributing to the cerebral blood flow response during acclimatization is an increase in haemoglobin and haematocrit. The remaining contribution to the cerebral blood flow response during acclimatization is likely to be attributable to ventilatory acclimatization.

View Article and Find Full Text PDF

Key Points: Sherpa have lived in the Nepal Himalaya for 25-40 thousand years and display positive physiological adaptations to hypoxia. Sherpa have previously been demonstrated to suffer less negative cerebral side effects of ascent to extreme altitude, yet little is known as to whether or not they display differential regulation of oxygen delivery to the brain compared to lowland natives. We demonstrate that Sherpa have lower brain blood flow during ascent to and acclimatization at high altitude compared to lowlanders and that this difference in flow is not attributable to factors such as mean arterial pressure, blood viscosity and pH.

View Article and Find Full Text PDF

Introduction: Optical coherence tomography (OCT) is a novel high-resolution imaging technique capable of visualizing in vivo structures at a resolution of ~10 μm. We have developed specialized OCT-based approaches that quantify diameter, speed, and flow rate in human cutaneous microvessels. In this study, we hypothesized that OCT-based microvascular assessments would possess comparable levels of reliability when compared with those derived using conventional laser Doppler flowmetry (LDF).

View Article and Find Full Text PDF