Background: Phenotypically, aortic valve interstitial cells are dynamic myofibroblasts, appearing contractile and activated in times of development, disease, and remodeling. The precise mechanism of phenotypic modulation is unclear, but it is speculated that both biomechanical and biochemical factors are influential. Therefore, we hypothesized that isolated and combined treatments of cyclic tension and transforming growth factor-beta1 would alter the phenotype and subsequent collagen biosynthesis of aortic valve interstitial cells in situ.
View Article and Find Full Text PDFIt has been speculated that heart valve interstitial cells (VICs) maintain valvular tissue homeostasis through regulated extracellular matrix (primarily collagen) biosynthesis. VICs appear to be phenotypically plastic, inasmuch as they transdifferentiate into myofibroblasts during valve development, disease, and remodeling. Under normal physiological conditions, transvalvular pressures (TVPs) on the right and left side of the heart are vastly different.
View Article and Find Full Text PDF