Publications by authors named "Hoveizi Elham"

The burgeoning field of nano-bone regeneration is yet to establish a definitive optimal particle size for nanocarriers. This study investigated the impacts of nanocarrier's particle size on the bone regeneration efficacy of fingolimod (FTY720)-loaded nanoemulsions. Two distinct particle sizes (60 and 190 nm, designated as NF60 and NF190, respectively) were produced using low-energy and high-energy emulsion techniques, maintaining a consistent surfactant, co-surfactant, and oil.

View Article and Find Full Text PDF

Introduction: Self-assembling peptide nanofibers have emerged as promising biomaterials in the realm of bone tissue engineering due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix. This study delved into the comparative efficacy of two distinct self-assembling peptide nanofibers, RADA-BMHP1 and KSL-BMHP1, both incorporating the biological motif of BMHP1, but differing in their core peptide sequences.

Methods: Cell viability and osteogenic differentiation in rat mesenchymal stem cells (rMSCs), and bone regeneration in rat were compared.

View Article and Find Full Text PDF

Hydrogel composites are water-swollen and three-dimensional materials that have been investigated for various biological applications, including controlled drug delivery and tissue engineering, owing to the similarity between their mechanical, electrical, and chemical properties with biological tissues. The hydrogel composites can provide a superior replication of living tissue compared to their single components. In this regard, Fe-BTC, Cu-BTC, and Zn-BTC MOFs were synthesized and modified with gallic acid (GA).

View Article and Find Full Text PDF

Nervous injuries are common in humans. One of the most advanced treatment methods is neural tissue engineering. This research aims to utilize nerve-like cells (NLCs) derived from endometrial mesenchymal stem cells (EnMSCs) on a polyacrylonitrile/chitosan (PAN/CS) scaffold, along with berberine, for the reconstruction of a rat sciatic nerve injury model.

View Article and Find Full Text PDF

Objective: Autophagy, as a cellular pathway involved in removing damaged proteins and organelles, performs a vital function in the homeostasis and fate of cells. Natural compounds of coumarin (CO) are found in a variety of herbs. Due to their many medicinal properties, including antitumor and anti-proliferative activity, they are involved in apoptosis and autophagy processes.

View Article and Find Full Text PDF

The ex vivo expansion of hematopoietic stem cells, with both high quantities and quality, is considered a paramount issue in cell and gene therapy for hematological diseases. Complex interactions between the bone marrow microenvironment and hematopoietic stem cells reveal the importance of using 2D and 3D coculture as a physiological system simulator in the proliferation, differentiation, and homeostasis of HSCs. Herein, the capacity of mesenchymal stem cells derived from different sources to support the expansion and maintenance of HSPC was compared with each other.

View Article and Find Full Text PDF

Aims: GW9508, a free fatty acid receptor agonist acts in a G-coupled protein receptor 40 (GPR40)-dependent pathway. Here, we investigated the induction of stress oxidative and autophagy by GW9508 in the human colorectal cancer cell line (HT-29) and the crosstalk between autophagy and apoptotic in HT-29 cells.

Methods: HT-29 was treated with GW9508 at a concentrations range of 50-500 μM in fibrin gel.

View Article and Find Full Text PDF

Despite recent technological advancements, effective healing from sciatic nerve damage remains inadequate. Cell-based therapies offer a promising alternative to autograft restoration for peripheral nerve injuries, and 3D printing techniques can be used to manufacture conduits with controlled diameter and size. In this study, we investigated the potential of Wharton's jelly-derived mesenchymal stem cells (WJMSCs) differentiated into schwann cells, using a polyacrylonitrile (PAN) conduit filled with fibrin hydrogel and graphene quantum dots (GQDs) to promote nerve regeneration in a rat sciatic nerve injury model.

View Article and Find Full Text PDF

Diabetes mellitus is a metabolic disease caused by a defect in insulin secretion, insulin function, or both that destroys pancreatic islet beta cells. There is ample evidence that long non-coding RNAs (lncRNAs) play a vital role in cell formation and differentiation. The present study aims to investigate the expression pattern of specific lncRNAs in mesenchymal stem cell (MSC) differentiation into insulin-producing beta cell (IPCs) progenitors for cell therapy purposes.

View Article and Find Full Text PDF

Today, significant success has been achieved in treating diabetes with cell therapy derived from various sources of stem and progenitors. The replacement of beta cells is one of the new diabetes treatment methods. To this end, the production of pancreatic beta precursors in cell culture has created an important research field for diabetes treatment.

View Article and Find Full Text PDF

The cancer microenvironment plays a crucial role in promoting metastasis and malignancy even in normal cells. In the present study, the effect of acidic and conditioned media of cancer cells (MDA-MB-231), separately and in combination, was studied for the first time on the cell death mechanisms and DNA methylation of normal fibroblasts (NIH/3T3). Cell survival of conditioned media was rescued by the addition of acidic media to conditioned media, as shown by the results.

View Article and Find Full Text PDF

Toxicity and autophagy effects of a new complex of platinum II (CPC) were evaluated on HeLa cells cultured on a PCL/gelatin electrospinning scaffold. HeLa cells were treated with CPC on the first, third, and fifth days and the concentration of IC was determined. The autophagic and apoptotic effects of CPC were examined by MTT assay, Acridine Orange, Giemsa, DAPI, MDC, real-time PCR, Western blot testing, and molecular docking.

View Article and Find Full Text PDF

This study aimed to treat dental injuries by utilizing one of the most advanced tissue engineering techniques. In this study, an in vitro model was employed to investigate the proliferation and odontogenic differentiation of canine endometrial stem cells (C-EnSCs). Furthermore, the dentin regeneration potential of odontoblast like-cells (OD) derived from C-EnSCs was assessed in rats.

View Article and Find Full Text PDF

This study aimed to determine the impact of human endometrial stem cells (EnSCs) and titanium oxide nanoparticles (TiO NPs) on dental pulp repair and regeneration in an animal model through dentine development and tissue regeneration. The EnSCs were put on a three-dimensional (3D) chitosan scaffold containing TiO NPs after obtaining and purifying the collagenase enzyme. Pulps were exposed on the maxillary left first molar of all rats followed by direct pulp capping with the experimental scaffolds, as follows.

View Article and Find Full Text PDF

The fabrication of multifunctional scaffolds has attracted much attention in biological fields. In this research, some novel composites of Cu(II) or Zn(II) metal-organic framework (M-MOF) and polycaprolactone (PCL), M-MOF@PCL, have been fabricated as multifunctional scaffolds for application in the tissue engineering (TE) field. The porous three-dimensional sponges were prepared by the salt leaching method.

View Article and Find Full Text PDF

In the current paper, we have successfully synthesized three new mercury coordination polymers with fascinating structures and properties a flexible sulfur donor ligand, namely, 1, 2, and 3 [Ls = 1,1-bis(3-methyl-4-imidazoline-2-thione)methane]. These complexes have been characterized by means of different techniques such as single crystal X-ray crystallography, FT-IR, elemental analysis (CHNS), UV-Vis, PXRD, BET, and TGA. Suitable single crystals of all complexes were obtained using the branch tube method with a very high yield and good stability due to the high affinity of mercury to bind to the thione groups.

View Article and Find Full Text PDF

Background: Imbalances in dopamine levels result in neurological and psychological disorders such as elevated dopamine in Parkinson's disease.

Objective: Despite a considerable number of advertisements claiming Aloe-vera's effectiveness in PD treatment, it has hidden long-term disadvantages for healthy people and PD patients.

Methods: In the present investigation, the impacts of Aloe-vera on dopaminergic cells were evaluated.

View Article and Find Full Text PDF

Alopecia is a treatable disorder that usually occurs due to high levels of 5-alpha dihydrotestosterone in hair follicles. To enhance the storage capacity of hair follicles and alleviate the inherent characteristics of dutasteride, 5-alpha reductase inhibitor, a prolonged-release nanocarrier was synthesised, and its influence on rat abdomen's skin was investigated. Results showed the lower ratio of S/Co (higher ethanol concentration) increased the hydrodynamic nanocarriers' particle size due to thermodynamic disturbance and Ostwald ripening.

View Article and Find Full Text PDF

Objective: The β-catenin signaling pathway promises the potential for differentiation of stem cells into definitive endoderm (DE) cells as precursors of beta cells. Therefore, it can be considered as an inducer for cell replacement therapies in diabetes. The main goal of this research is to successfully culture and induce differentiation of human Wharton's jelly mesenchymal stem cells (hWJMSCs) into Sox17-expressing cells using a Wnt/β-catenin pathway agonist (SKL2001) plus nanoparticles on a polylactic acid/chitosan (PLA/Cs) nanocomposite scaffold.

View Article and Find Full Text PDF

In this study, we designed an engineered tissue and transplanted it to an animal model, trying to take an effective step toward meeting the needs of diabetic patients. Here, human endometrial cells were differentiated into PDX1-expressing cells using a small molecule of Y-27632 on polyacrylonitrile (PAN) electrospun scaffolds and transplanted into diabetic rats. PAN nanofibers were made by electrospinning.

View Article and Find Full Text PDF

In this study, the ability of silymarin to heal rat calvarial bone critical defects with mesenchymal stem cells isolated from human Wharton's jelly (HWJMSC) cultured on the electrospun scaffold of poly (lactic acid)/carbon nanotube (PLA/CNT) has been examined. In this study, 20 adult male Wistar rats were divided into four groups of five each. Under general anesthesia, 8 mm defects were created in the calvarial bone of the rats.

View Article and Find Full Text PDF

Diabetes mellitus is the most common metabolic disorder with a high mortality and morbidity rate. A new promising strategy to treat DM is pancreatic tissue engineering. We described a 3D culture system accompanied by signaling factors to differentiate hEnSCs into IPCs in the presence of nZnO.

View Article and Find Full Text PDF

Electrospun nanofibrous scaffolds show huge potential to improve the neurological outcome in central nervous system disorders. In this study, we cultured mouse embryonic stem cells (mESCs) on an electrospun nanofibrous polylactic acid/Chitosan/Wax (PLA/CS/Wax) scaffold and surveyed the attachment, behavior, and differentiation of mESCs into neural cells. Differentiation in neural-like cells (NLCs) was investigated with a medium containing SB431542 as a small molecule and conjugated linolenic acid after 20 days.

View Article and Find Full Text PDF

Recent studies suggest that nanotopography can trigger colocalization of integrins and bone morphogenetic protein 2 (BMP2) receptors (e.g., BMPR1A), thereby leading to osteogenesis.

View Article and Find Full Text PDF