Spontaneous decay of a single photon is a notoriously inefficient process in nature irrespective of the frequency range. We report that a quantum phase-slip fluctuation in high-impedance superconducting waveguides can split a single incident microwave photon into a large number of lower-energy photons with a near unit probability. The underlying inelastic photon-photon interaction has no analogs in nonlinear optics.
View Article and Find Full Text PDFWe investigate inelastic microwave photon scattering by a transmon qubit embedded in a high-impedance circuit. The transmon undergoes a charge-localization (Schmid) transition upon the impedance reaching the critical value. Because of the unique transmon level structure, the fluorescence spectrum carries a signature of the transition point.
View Article and Find Full Text PDFWe show that the annihilation dynamics of excess quasiparticles in superconductors may result in the spontaneous formation of large spin-polarized clusters. This presents a novel scenario for spontaneous spin polarization. We estimate the relevant scales for aluminum, finding the feasibility of clusters with total spin S≃10^{4}ℏ that could be spread over microns.
View Article and Find Full Text PDFWe evaluate the rates of energy and phase relaxation of a superconducting qubit caused by stray photons with energy exceeding the threshold for breaking a Cooper pair. All channels of relaxation within this mechanism are associated with the change in the charge parity of the qubit, enabling the separation of the photon-assisted processes from other contributions to the relaxation rates. Among the signatures of the new mechanism is the same order of rates of the transitions in which a qubit loses or gains energy, which is in agreement with recent experiments.
View Article and Find Full Text PDFWe consider the ground-state energy and the spectrum of the low-energy excitations of a Majorana island formed of topological superconductors connected by a single-mode junction of arbitrary transmission. Coulomb blockade results in e-periodic modulation of the energies with the gate-induced charge. We find the amplitude of modulation as a function of reflection coefficient R.
View Article and Find Full Text PDFNonequilibrium quasiparticle excitations degrade the performance of a variety of superconducting circuits. Understanding the energy distribution of these quasiparticles will yield insight into their generation mechanisms, the limitations they impose on superconducting devices, and how to efficiently mitigate quasiparticle-induced qubit decoherence. To probe this energy distribution, we systematically correlate qubit relaxation and excitation with charge-parity switches in an offset-charge-sensitive transmon qubit, and find that quasiparticle-induced excitation events are the dominant mechanism behind the residual excited-state population in our samples.
View Article and Find Full Text PDFRecently, it has been predicted that the Andreev bound state spectrum of four-terminal Josephson junctions may possess zero-energy Weyl singularities. Using one superconducting phase as a control parameter, these singularities are associated with topological transitions between time-reversal symmetry broken phases with different Chern numbers. Here we show that such topological transitions may also be tuned with a magnetic flux through the junction area in a three-terminal geometry.
View Article and Find Full Text PDFWe calculate the effect of impurities on the superconducting phase diagram of transition metal dichalcogenide monolayers in the presence of an in-plane magnetic field. Because of strong intrinsic spin-orbit coupling, the upper critical field greatly surpasses the Pauli limit at low temperatures. We find that it is insensitive to intravalley scattering and, ultimately, limited by intervalley scattering.
View Article and Find Full Text PDFPhys Rev Lett
September 2016
Experimentally, the concentration of quasiparticles in gapped superconductors always largely exceeds the equilibrium one at low temperatures. Since these quasiparticles are detrimental for many applications, it is important to understand theoretically the origin of the excess. We demonstrate in detail that the dynamics of quasiparticles localized at spatial fluctuations of the gap edge becomes exponentially slow.
View Article and Find Full Text PDFTopological materials and their unusual transport properties are now at the focus of modern experimental and theoretical research. Their topological properties arise from the bandstructure determined by the atomic composition of a material and as such are difficult to tune and naturally restricted to ≤3 dimensions. Here we demonstrate that n-terminal Josephson junctions with conventional superconductors may provide novel realizations of topology in n-1 dimensions, which have similarities, but also marked differences with existing 2D or 3D topological materials.
View Article and Find Full Text PDFJ Phys Condens Matter
March 2015
Motivated by recent experimental research, we study a superconducting constriction subject to a dc and ac phase bias. We consider the processes whereby the ac drive promotes one quasiparticle from an Andreev bound state to a delocalized state outside the superconducting gap. We demonstrate that with these processes one can control the population of the Andreev bound states in the constriction.
View Article and Find Full Text PDFThe physics and operating principles of hybrid superconductor-semiconductor devices rest ultimately on the magnetic properties of their elementary subgap excitations, usually called Andreev levels. Here we report a direct measurement of the Zeeman effect on the Andreev levels of a semiconductor quantum dot with large electron g-factor, strongly coupled to a conventional superconductor with a large critical magnetic field. This material combination allows spin degeneracy to be lifted without destroying superconductivity.
View Article and Find Full Text PDFTopological Josephson junctions carry 4π-periodic bound states. A finite bias applied to the junction limits the lifetime of the bound state by dynamically coupling it to the continuum. Another characteristic time scale, the phase adjustment time, is determined by the resistance of the circuit "seen" by the junction.
View Article and Find Full Text PDFWe study the Josephson current through a long ferromagnetic bilayer in the diffusive regime. For noncollinear magnetizations, we find that the current-phase relation is dominated by its second harmonic, which corresponds to the long-range coherent propagation of two triplet pairs of electrons.
View Article and Find Full Text PDFQuantum fluctuations in an anharmonic superconducting circuit enable frequency conversion of individual incoming photons. This effect, linear in the photon beam intensity, leads to ramifications for the standard input-output circuit theory. We consider an extreme case of anharmonicity in which photons scatter off a small set of weak links within a Josephson junction array.
View Article and Find Full Text PDFWe study charge transport through a metallic dot coupled to a superconducting and a ferromagnetic lead with a precessing magnetization due to ferromagnetic resonance. Using the quasiclassical theory, we find that the magnetization precession induces a dc current in the subgap regime even in the absence of a bias voltage. This effect is due to the rectification of the ac spin currents at the interface with the ferromagnet; it exists in the absence of spin current in the superconductor.
View Article and Find Full Text PDFThere is strong experimental evidence of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state formation in layered organic superconductors in a parallel magnetic field. We study theoretically the interplay between the orbital effect and the FFLO modulation in this case and demonstrate that the in-plane critical field anisotropy drastically changes at the transition to the FFLO state. The very peculiar angular dependence of the superconducting onset temperature which is predicted may serve for unambiguous identification of the FFLO modulation.
View Article and Find Full Text PDFWe study Josephson junctions between superconductors connected through the helical edge states of a two-dimensional topological insulator in the presence of a magnetic barrier. As the equilibrium Andreev bound states of the junction are 4π periodic in the superconducting phase difference, it was speculated that, at finite dc bias voltage, the junction exhibits a fractional Josephson effect with half the Josephson frequency. Using the scattering matrix formalism, we show that his effect is absent in the average current.
View Article and Find Full Text PDFWe use a semiclassical theory to calculate the current correlations in a multiterminal structure composed of a normal metallic dot connected to all superconducting leads at arbitrary voltage and temperature. This theory holds when the proximity effect is suppressed in the dot. At low voltage, eV<
We discuss the sign of the persistent current of N electrons in one dimensional rings. Using a topology argument, we establish lower bounds for the free energy in the presence of arbitrary electron-electron interactions and external potentials. Those bounds are the counterparts of upper bounds derived by Leggett.
View Article and Find Full Text PDFThe Josephson current in a diffusive superconductor-ferromagnet-superconductor junction with precessing magnetization is calculated within the quasiclassical theory of superconductivity. When the junction is phase biased, a stationary current (without ac component) can flow through it despite the nonequilibrium condition. A large critical current is predicted due to a dynamically induced long range triplet proximity effect.
View Article and Find Full Text PDFPhys Rev Lett
March 2004
Interference of electronic waves undergoing Andreev reflection in diffusive conductors determines the energy profile of the conductance on the scale of the Thouless energy. A similar dependence exists in the current noise, but its behavior is known only in a few limiting cases. We consider a metallic diffusive wire connected to a superconducting reservoir through an interface characterized by an arbitrary distribution of channel transparencies.
View Article and Find Full Text PDFWe derive the parallel upper critical field, Hc2, as a function of the temperature T in quasi-2D organic compound lambda-(BETS)2FeCl4, accounting for the formation of the nonuniform Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state. To further check the 2D LOFF model, we propose to study the Hc2(T) curve at low T in tilted fields, where the vortex state is described by the high Landau level functions characterized by the index n. We predict a cascade of first-order transitions between vortex phases with different n, between phases with different types of the symmetry at given n and the change of the superconducting transition from the second order to the first order as FeCl4 ions are replaced partly by GaCl4 ions.
View Article and Find Full Text PDF