Publications by authors named "Houyu Zhu"

Hepatocyte growth factor (HGF) plays a critical role in promoting tumor migration, invasion, and metastasis, partly by upregulating integrins. The molecular mechanisms behind how HGF facilitates integrin-mediated tumorigenesis are not fully understood. In this study, we demonstrate that the ubiquitin-specific peptidase 22 (USP22) is essential for HGF-induced melanoma metastasis.

View Article and Find Full Text PDF

Chronic stress-induced epinephrine (EPI) accelerates breast cancer progression and metastasis, but the molecular mechanisms remain unclear. Herein, we found a strong positive correlation between circulating EPI levels and the tumoral expression of ubiquitin-specific peptidase 22 (USP22) in patients with breast cancer. USP22 facilitated EPI-induced breast cancer progression and metastasis by enhancing adipose triglyceride lipase (ATGL)-mediated lipolysis.

View Article and Find Full Text PDF

Metal-nitrogen-carbon catalysts with hierarchically dispersed porosity are deemed as efficient geometry for oxygen reduction reaction (ORR). However, catalytic performance determined by individual and interacting sites originating from structural heterogeneity is particularly elusive and yet remains to be understood. Here, an efficient hierarchically porous Fe single atom catalyst (Fe SAs-HP) is prepared with Fe atoms densely resided at micropores and mesopores.

View Article and Find Full Text PDF

Methanol steam reforming (MSR) is studied on a PtSn surface using the density functional theory (DFT). An MSR network is mapped out, including several reaction pathways. The main pathway proposed is CHOH + OH → CHO → CHO → CHO + OH → CHOOH → CHOOH → COOH → COOH + OH → CO + HO.

View Article and Find Full Text PDF

Controlling the formation of single-atom (SA) sites from supported metal clusters is an important and interesting issue to effectively improve the catalytic performance of heterogeneous catalysts. For extensively studied CO oxidation over metal/CeO systems, the SA formation and stabilization under reaction conditions is generally attributed to CO adsorption, however, the pivotal role played by the reducible CeO support and the underlying electronic metal-support interaction (EMSI) are not yet fully understood. Based on a ceria-supported Cu catalyst model, we performed density functional theory calculations to investigate the intrinsic SA formation mechanism and discussed the synergistic effect of Gd-doped CeO and CO adsorption on the SA formation.

View Article and Find Full Text PDF

Effective bifunctional catalysts are needed for the two main processes in metal-air batteries (oxygen evolution reaction and oxygen reduction reaction (OER/ORR)) to increase efficiency. Herein, we systematically investigate the stability, electronic structure, and catalytic performance of the OER/ORR of two-dimensional (2D) conducting metal-organic frameworks (MOFs) M(CSe) (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Pd, Ir, and Pt) by first-principles calculations. The results show that Co(CSe) has an overpotential of 0.

View Article and Find Full Text PDF

Development of efficient catalysts with high atomic utilization and turnover frequency (TOF) for H activation in slurry phase hydrocracking (SPHC) is crucial for the conversion of vacuum residue (VR). Herein, for the first time, we reported a robust and stable single atoms (SAs) Mo catalyst through a polymerization-pyrolysis-in situ sulfurization strategy for activating H in SPHC of VR. An interesting atomic coordination structural dynamic evolution of Mo active sites was discovered.

View Article and Find Full Text PDF
Article Synopsis
  • Single-atom catalysts (SACs) have their catalytic effectiveness influenced by the local chemical environments of their substrates, allowing for adjustments to their electronic structures.
  • The study used first-principles calculations to explore how the geometric and electronic properties of substrates like carbon nanotubes interact with various transition metal SACs, focusing on the electrocatalytic nitrogen reduction reaction (NRR).
  • Three specific SACs were found to achieve high selectivity for NRR with low energy barriers, indicating that a combination of substrate characteristics and SAC design can significantly enhance catalytic performance.
View Article and Find Full Text PDF

Two-dimensional heterostructure manipulation is promising to overcome the high recombination rates and limited redox abilities of photogenerated electron-hole pairs in a single photocatalyst. The built-in electric field () in the type-II heterojunction is normally unfavorable for the desired charge transfer, which is an important but easily neglected issue that needs to be solved. Here, on the basis of the density functional theory (DFT) and the nonadiabatic molecular dynamics (NAMD) calculations, we obtain a type-II band alignment in Janus-MoSSe/WS heterostructure, which meets the band-edge position requirement for water splitting.

View Article and Find Full Text PDF

Many organic molecules with various functional groups have been used to passivate the perovskite surface for improving the efficiency and stability of perovskite solar cell (PSCs). However, the intrinsic attributes of the passivation effect based on different chemical bonds are rarely studied. Here, we comparatively investigate the passivation effect among 12 types of functional groups on para-tert-butylbenzene for PSCs and find that the open circuit voltage (V) tends to increase with the chemical bonding strength between perovskite and these passivation additive molecules.

View Article and Find Full Text PDF

Adsorption and dehydrogenation of C2-C6n-alkanes are investigated on a Pt substrate using density functional theory (DFT) calculations, and the size effects of alkane molecules and Pt substrates are discussed in detail. The Pt(111) surface and Pt55 cluster are chosen to represent large and small Pt nanoparticles, respectively. The C2-C6 straight-chain alkanes show no site preference on Pt(111) drifting over the surface, but prefer to locate along the edge sites of Pt55.

View Article and Find Full Text PDF

Hybrid perovskite thin films are prone to producing surface vacancies during the film formation, which degrade the stability and photovoltaic performance. Passivation via post-treatment can heal these defects, but present methods are slightly destructive to the bulk of 3D perovskite due to the solvent effect, which hinders fabrication reproducibility. Herein, nondestructive surface/interface passivation using 4-fluoroaniline (FAL) is established.

View Article and Find Full Text PDF

The graphdiyne family has attracted a high degree of concern because of its intriguing and promising properties. However, graphdiyne materials reported to date represent only a tiny fraction of the possible combinations. In this work, we demonstrate a computational approach to generate a series of conceivable graphdiyne-based frameworks (GDY-Rs and Li@GDY-Rs) by introducing a variety of functional groups (R = -NH, -OH, -COOH, and -F) and doping metal (Li) in the molecular building blocks of graphdiyne without restriction of experimental conditions and rapidly screen the best candidates for the application of CO capture and sequestration (CCS).

View Article and Find Full Text PDF

The hydrodesulfurization (HDS) of thiophene on clean and S-modified MoP(010) is investigated to understand the HDS mechanism as well as the surface sulfur (S) atom effect using periodic density functional theory (DFT). The results show that thiophene prefers strongly flat adsorption on both the clean and S-modified surfaces, in either the molecular state or the dissociative state breaking simultaneously one C-S bond, and the adsorption of thiophene can be slightly weakened by the surface S atom. Thermodynamic and kinetic analysis indicates that the HDS of thiophene in both the molecular and dissociative adsorption states prefers to take place along the direct desulfurization (DDS) pathway rather than hydrogenation on both the clean and S-modified MoP(010) surfaces.

View Article and Find Full Text PDF

We report on the synthesis of iron-nickel sulfide (INS) ultrathin nanosheets by topotactic conversion from a hydroxide precursor. The INS nanosheets exhibit excellent activity and stability in strong acidic solutions as a hydrogen evolution reaction (HER) catalyst, lending an attractive alternative to the Pt catalyst. The metallic α-INS nanosheets show an even lower overpotential of 105 mV at 10 mA/cm(2) and a smaller Tafel slope of 40 mV/dec.

View Article and Find Full Text PDF

Ethanol decomposition on Pd(110) is comprehensively investigated using self-consistent periodic density functional theory. Geometries and energies for all the intermediates involved are analyzed, and the decomposition network is mapped out to illustrate the reaction mechanism. On Pd(110), the most stable adsorption of the involved species tends to follow the gas-phase bond order rules, wherein C is tetravalent and O is divalent with the missing H atoms replaced by metal atoms.

View Article and Find Full Text PDF

The initial hydrogenations of pyridine on MoP(001) with various hydrogen species are studied using self-consistent periodic density functional theory (DFT). The possible surface hydrogen species are examined by studying interaction of H(2) and H(2)S with the surface, and the results suggest that the rational hydrogen source for pyridine hydrogenations should be surface hydrogen atoms, followed by adsorbed H(2)S and SH. On MoP(001), pyridine has two types of adsorption modes, i.

View Article and Find Full Text PDF

Decomposition of methanthiol on Pt(111) is systematically investigated using self-consistent periodic density functional theory (DFT), and the decomposition network has been mapped out. The most stable adsorption of the involved species tends to form the sp(3) hybridized configuration of both C and S atoms, in which C is almost tetrahedral and S has the tendency to bond to three atoms. Spontaneous dissociation rather than desorption is preferred for adsorbed methanthiol.

View Article and Find Full Text PDF

The gas-phase reaction of Ti(+) ((4)F and (2)F) with methanol is investigated using density functional theory. Geometries and energies of the reactants, intermediates, and products involved are calculated. The approach of Ti(+) toward methanol could form either a "classical" O- or a "nonclassical" eta(3)-methyl H-attached complex.

View Article and Find Full Text PDF

The gas-phase Mn(+)- and Co(+)-mediated oxidation of benzene by N(2)O has been theoretically investigated using density functional theory. The geometries and energies of all the stationary points involved are located. Two different oxidation mechanisms, i.

View Article and Find Full Text PDF