Publications by authors named "Houweling P"

We used gene editing to introduce DNA sequences encoding the tdTomato fluorescent protein into the α -skeletal actin 1 (ACTA1) locus to develop an ACTA1-tdTomato induced pluripotent stem cell reporter line for monitoring differentiation of skeletal muscle. This cell line will be used to better understand skeletal muscle maturation and development in vitro as well as provide a useful tool for drug screening and the evaluation of novel therapeutics for the treatment of skeletal muscle disease.

View Article and Find Full Text PDF

Background: ATL1102 is a 2'MOE gapmer antisense oligonucleotide to the CD49d alpha subunit of VLA-4, inhibiting expression of CD49d on lymphocytes, reducing survival, activation and migration to sites of inflammation. Children with DMD have dystrophin deficient muscles susceptible to contraction induced injury, which triggers the immune system, exacerbating muscle damage. CD49d is a biomarker of disease severity in DMD, with increased numbers of high CD49d expressing T cells correlating with more severe and progressive weakess, despite corticosteroid treatment.

View Article and Find Full Text PDF

It has been proposed that an increased susceptivity to oxidative stress caused by the absence of the protein dystrophin from the inner surface of the sarcolemma is a trigger of skeletal muscle necrosis in the destructive dystrophin deficient muscular dystrophies. Here we use the mdx mouse model of human Duchenne Muscular Dystrophy to test the hypothesis that adding the antioxidant NAC at 2% to drinking water for six weeks will treat the inflammatory phase of the dystrophic process and reduce pathological muscle fiber branching and splitting resulting in a reduction of mass in mdx fast-twitch EDL muscles. Animal weight and water intake was recorded during the six weeks when 2% NAC was added to the drinking water.

View Article and Find Full Text PDF

Background: A common polymorphism (R577X) in the ACTN3 gene results in the complete absence of the Z-disc protein α-actinin-3 from fast-twitch muscle fibres in ~ 16% of the world's population. This single gene polymorphism has been subject to strong positive selection pressure during recent human evolution. Previously, using an Actn3KO mouse model, we have shown in fast-twitch muscles, eccentric contractions at L + 20% stretch did not cause eccentric damage.

View Article and Find Full Text PDF

Nemaline myopathy (NM) is a congenital skeletal muscle disorder that typically results in muscle weakness and the presence of rod-like structures (nemaline bodies) in the sarcoplasma and/or in the nuclei of myofibres. Two induced pluripotent stem cell (iPSC) lines were generated from the lymphoblastoid cells of a 1-month-old male with severe NM caused by a homozygous recessive mutation in the ACTA1 gene (c.121C > T, p.

View Article and Find Full Text PDF

Variants in the ACTA1 gene are a common cause of nemaline myopathy (NM); a muscle disease that typically presents at birth or early childhood with hypotonia and muscle weakness. Here, we generated an induced pluripotent stem cell line (iPSC) from lymphoblastoid cells of a 3-month-old female patient with intermediate NM caused by a dominant ACTA1 variant (c.515C > A (p.

View Article and Find Full Text PDF

The lack of dystrophin in Duchenne muscular dystrophy (DMD) results in membrane fragility resulting in contraction-induced muscle damage and subsequent inflammation. The impact of inflammation is profound, resulting in fibrosis of skeletal muscle, the diaphragm and heart, which contributes to muscle weakness, reduced quality of life and premature death. To date, the innate immune system has been the major focus in individuals with DMD, and our understanding of the adaptive immune system, specifically T cells, is limited.

View Article and Find Full Text PDF

Duchenne muscular dystrophy is caused by the absence of the protein dystrophin from skeletal muscle and is characterized by progressive cycles of necrosis/regeneration. Using the dystrophin deficient mouse model, we studied the morphological and contractile chronology of dystrophic skeletal muscle pathology in fast-twitch Extensor Digitorum Longus muscles from animals 4-22 months of age containing 100% regenerated muscle fibers. Catastrophically, the older age groups lost ∼80% of their maximum force after one eccentric contraction (EC) of 20% strain with the greatest loss of ∼92% recorded in senescent 22-month-old mice.

View Article and Find Full Text PDF

The common null polymorphism (R577X) in the ACTN3 gene is present in over 1.5 billion people worldwide and results in the absence of the protein α-actinin-3 from the Z-discs of fast-twitch skeletal muscle fibres. We have previously reported that this polymorphism is a modifier of dystrophin-deficient Duchenne Muscular Dystrophy.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is the second most common fatal genetic disease in humans and is characterized by the absence of a functional copy of the protein dystrophin from skeletal muscle. In dystrophin-negative humans and rodents, regenerated skeletal muscle fibers show abnormal branching. The number of fibers with branches and the complexity of branching increases with each cycle of degeneration/regeneration.

View Article and Find Full Text PDF

Homozygosity for the common null polymorphism ( 577X) results in α-actinin-3 deficiency in ~20% of humans worldwide and is linked to reduced sprint and power performance in both elite athletes and the general population. α-Actinin-3 deficiency is also associated with reduced muscle mass, increased risk of sarcopenia, and altered muscle wasting response induced by denervation and immobilization. Here, we show that α-actinin-3 plays a key role in the regulation of protein synthesis and breakdown signaling in skeletal muscle and influences muscle mass from early postnatal development.

View Article and Find Full Text PDF

To produce an in vitro model of nemaline myopathy, we reprogrammed the peripheral blood mononuclear cells (PBMCs) of a patient with a heterozygous p.Gly148Asp mutation in exon 3 of the ACTA1 gene to iPSCs. Using CRISPR/Cas9 gene editing we corrected the mutation to generate an isogenic control line.

View Article and Find Full Text PDF

The protein α-actinin-3 expressed in fast-twitch skeletal muscle fiber is absent in 1.5 billion people worldwide due to homozygosity for a nonsense polymorphism in ACTN3 (R577X). The prevalence of the 577X allele increased as modern humans moved to colder climates, suggesting a link between α-actinin-3 deficiency and improved cold tolerance.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is a genetic disorder that affects a range of tissue systems, however the associated muscle weakness and fatigability can have a profound impact on quality of life. Prior studies using the limb-specific Nf1 knockout mouse (Nf1Prx1-/-) revealed an accumulation of intramyocellular lipid (IMCL) that could be rescued by a diet supplemented with L-carnitine and enriched for medium-chain fatty acids (MCFAs). In this study we used the Nf1Prx1-/- mouse to model a range of dietary interventions designed to reduce IMCL accumulation, and analyze using other modalities including in situ muscle physiology and lipid mass spectrometry.

View Article and Find Full Text PDF

The conversion of white adipocytes to thermogenic beige adipocytes represents a potential mechanism to treat obesity and related metabolic disorders. However, the mechanisms involved in converting white to beige adipose tissue remain incompletely understood. Here we show profound beiging in a genetic mouse model lacking the transcriptional repressor Krüppel-like factor 3 (KLF3).

View Article and Find Full Text PDF

Background: It has long been recognized that vitamin D deficiency is associated with muscle weakness and falls. Vitamin D receptor (VDR) is present at very low levels in normal muscle. Whether vitamin D plays a direct role in muscle function is unknown and is a subject of hot debate.

View Article and Find Full Text PDF

A common null polymorphism (rs1815739; R577X) in the gene that codes for α-actinin-3 (ACTN3) has been related to different aspects of exercise performance. Individuals who are homozygous for the X allele are unable to express the α-actinin-3 protein in the muscle as opposed to those with the RX or RR genotype. α-actinin-3 deficiency in the muscle does not result in any disease.

View Article and Find Full Text PDF

A common null polymorphism in the ACTN3 gene (rs1815739:C>T) results in replacement of an arginine (R) with a premature stop codon (X) at amino acid 577 in the fast muscle protein α-actinin-3. The ACTN3 p.Arg577Ter allele (aka p.

View Article and Find Full Text PDF

Loss of expression of ACTN3, due to homozygosity of the common null polymorphism (p.Arg577X), is underrepresented in elite sprint/power athletes and has been associated with reduced muscle mass and strength in humans and mice. To investigate ACTN3 gene dosage in performance and whether expression could enhance muscle force, we performed meta-analysis and expression studies.

View Article and Find Full Text PDF

A striking pathological feature of dystrophinopathies is the presence of morphologically abnormal branched skeletal muscle fibers. The deterioration of muscle contractile function in Duchenne muscular dystrophy is accompanied by both an increase in number and complexity of these branched fibers. We propose that when number and complexity of branched fibers reaches a critical threshold, or "tipping point," the branches in and of themselves are the site of contraction-induced rupture.

View Article and Find Full Text PDF

Background: Studies investigating associations between ACTN3 R577X and ACE I/D genotypes and endurance athletic status have been limited by small sample sizes from mixed sport disciplines and lack quantitative measures of performance.

Aim: To examine the association between ACTN3 R577X and ACE I/D genotypes and best personal running times in a large homogeneous cohort of endurance runners.

Methods: We collected a total of 1064 personal best 1500, 3000, 5000 m and marathon running times of 698 male and female Caucasian endurance athletes from six countries (Australia, Greece, Italy, Poland, Russia and UK).

View Article and Find Full Text PDF

In this open-label multicentre randomised controlled trial, we investigated three peri-operative treatment strategies to lower glucose and reduce the need for rescue insulin in patients aged 18-75 years with type-2 diabetes mellitus undergoing non-cardiac surgery. Patients were randomly allocated using a web-based randomisation program to premedication with liraglutide (liraglutide group), glucose-insulin-potassium infusion (insulin infusion group) or insulin bolus regimen (insulin bolus group), targeting a glucose < 8.0 mmol.

View Article and Find Full Text PDF

Obesity is a worldwide health crisis, and the identification of genetic modifiers of weight gain is crucial in understanding this complex disorder. A common null polymorphism in the fast fiber-specific gene ACTN3 (R577X) is known to influence skeletal muscle function and metabolism. α-Actinin-3 deficiency occurs in an estimated 1.

View Article and Find Full Text PDF