Publications by authors named "Houtman M"

Article Synopsis
  • Reduced functioning of the K2.1 potassium channel is linked to conditions like heart failure and Andersen-Tawil Syndrome, making it crucial to find treatments that specifically target this channel, as current therapies do not.
  • Research analyzed the effects of propafenone and its analogues on the K2.1 channel using techniques like patch-clamp electrophysiology and western blot analysis, highlighting the potential of these compounds to improve potassium current.
  • Notably, the analogue GPV0057 increased the potassium current without blocking it at low concentrations, suggesting it could be a viable treatment option for diseases related to K2.1 deficiency.
View Article and Find Full Text PDF

In this study, we optimized the dissociation of synovial tissue biopsies for single-cell omics studies and created a single-cell atlas of human synovium in inflammatory arthritis. The optimized protocol allowed consistent isolation of highly viable cells from tiny fresh synovial biopsies, minimizing the synovial biopsy drop-out rate. The synovium scRNA-seq atlas contained over 100,000 unsorted synovial cells from 25 synovial tissues affected by inflammatory arthritis, including 16 structural, 11 lymphoid, and 15 myeloid cell clusters.

View Article and Find Full Text PDF

Although patients with rheumatoid arthritis (RA) typically exhibit symmetrical joint involvement, some patients develop alternative disease patterns in response to treatment, suggesting that different molecular mechanism may underlie disease progression depending on joint location. Here, we identify joint-specific changes in RA synovium and synovial fibroblasts (SF) between knee and hand joints. We show that the long non-coding RNA HOTAIR, which is only expressed in knee SF, regulates more than 50% of this site-specific gene expression in SF.

View Article and Find Full Text PDF

Bromodomain- and extra-terminal domain (BET) proteins are epigenetic reader proteins that regulate transcription of their target genes by binding to acetylated histone side chains. Small molecule inhibitors, such as I-BET151, have anti-inflammatory properties in fibroblast-like synoviocytes (FLS) and in animal models of arthritis. Here, we investigated whether BET inhibition can also affect the levels of histone modifications, a novel mechanism underlying BET protein inhibition.

View Article and Find Full Text PDF

Allelic variants of HLA-DRB1 have been associated with a variety of autoimmune and infectious diseases. Although the precise molecular mechanisms by which HLA-DRB1 alleles predispose to a particular disease are currently unclear, it has been shown that mRNA expression levels of HLA-DRB1 are dependent on the different alleles. We aimed to measure HLA-DR beta chain levels in peripheral blood mononuclear cells of individuals carrying HLA-DRB1*03:01/*04:01 and HLA-DRB1*03:01/*15:01 alleles by western blotting, using five commercially-available HLA-DRB antibodies.

View Article and Find Full Text PDF

Objective: We have recently shown that priming of synovial fibroblasts (SFs) drives arthritis flares. Pathogenic priming of SFs is essentially mediated by epigenetic reprogramming. Bromodomain and extraterminal motif (BET) proteins translate epigenetic changes into transcription.

View Article and Find Full Text PDF

Background: The phosphoinositide 3-kinase (PI3K) signaling pathway is an interesting target in cancer treatment. The awareness of the proarrhythmic risk of PI3K inhibitors was raised because PI3K is also involved in regulating signaling toward cardiac ion channels. Canine cardiomyocytes treated with PI3K inhibitors show an increased action potential duration and reduced cardiac repolarizing currents.

View Article and Find Full Text PDF

We present an optimized dissociation protocol for preparing high-quality skin cell suspensions for in-depth single-cell RNA-sequencing (scRNA-seq) analysis of fresh and cultured human skin. Our protocol enabled the isolation of a consistently high number of highly viable skin cells from small freshly dissociated punch skin biopsies, which we use for scRNA-seq studies. We recapitulated not only the main cell populations of existing single-cell skin atlases, but also identified rare cell populations, such as mast cells.

View Article and Find Full Text PDF

DEND syndrome is a rare channelopathy characterized by a combination of developmental delay, epilepsy and severe neonatal diabetes. Gain of function mutations in the gene, encoding the K6.2 subunit of the I potassium channel, stand at the basis of most forms of DEND syndrome.

View Article and Find Full Text PDF

Glucocorticoids (GCs) exert potent anti-inflammatory effects in immune cells through the glucocorticoid receptor (GR). Dendritic cells (DCs), central actors for coordinating immune responses, acquire tolerogenic properties in response to GCs. Tolerogenic DCs (tolDCs) have emerged as a potential treatment for various inflammatory diseases.

View Article and Find Full Text PDF

alleles have been associated with several autoimmune diseases. For anti-citrullinated protein antibody positive rheumatoid arthritis (RA), shared epitope (SE) alleles are the major genetic risk factors. In order to study the genetic regulation of major histocompatibility complex (MHC) Class II gene expression in immune cells, we investigated transcriptomic profiles of a variety of immune cells from healthy individuals carrying different alleles.

View Article and Find Full Text PDF

Background: Genome-wide association studies have reported more than 100 risk loci for rheumatoid arthritis (RA). These loci are shown to be enriched in immune cell-specific enhancers, but the analysis so far has excluded stromal cells, such as synovial fibroblasts (FLS), despite their crucial involvement in the pathogenesis of RA. Here we integrate DNA architecture, 3D chromatin interactions, DNA accessibility, and gene expression in FLS, B cells, and T cells with genetic fine mapping of RA loci.

View Article and Find Full Text PDF

Voltage-gated potassium 11.1 (K11.1) channels play a critical role in repolarization of cardiomyocytes during the cardiac action potential (AP).

View Article and Find Full Text PDF

Background And Purpose: K 11.1 (hERG) channel blockade is an adverse effect of many drugs and lead compounds, associated with lethal cardiac arrhythmias. LUF7244 is a negative allosteric modulator/activator of K 11.

View Article and Find Full Text PDF

K2.1 potassium channels, producing inward rectifier potassium current ( ), are important for final action potential repolarization and a stable resting membrane potential in excitable cells like cardiomyocytes. Abnormal K2.

View Article and Find Full Text PDF

KATP channels consist of four Kir6.x pore-forming subunits and four regulatory sulfonylurea receptor (SUR) subunits. These channels couple the metabolic state of the cell to membrane excitability and play a key role in physiological processes such as insulin secretion in the pancreas, protection of cardiac muscle during ischemia and hypoxic vasodilation of arterial smooth muscle cells.

View Article and Find Full Text PDF

Cantú syndrome (CS) is caused by dominant gain-of-function mutation in ATP-dependent potassium channels. Cellular ATP concentrations regulate potassium current thereby coupling energy status with membrane excitability. No specific pharmacotherapeutic options are available to treat CS but I channels are pharmaceutical targets in type II diabetes or cardiac arrhythmia treatment.

View Article and Find Full Text PDF

Background: Polymyositis (PM) and dermatomyositis (DM) are two distinct subgroups of idiopathic inflammatory myopathies, a chronic inflammatory disorder clinically characterized by muscle weakness and inflammatory cell infiltrates in muscle tissue. In PM, a major component of inflammatory cell infiltrates is CD8+ T cells, whereas in DM, CD4+ T cells, plasmacytoid dendritic cells, and B cells predominate. In this study, with the aim to differentiate involvement of CD4+ and CD8+ T-cell subpopulations in myositis subgroups, we investigated transcriptomic profiles of T cells from peripheral blood of patients with myositis.

View Article and Find Full Text PDF

The microRNA-34a is a well-studied tumor suppressor microRNA (miRNA) and a direct downstream target of TP53 with roles in several pathways associated with oncogenesis, such as proliferation, cellular growth, and differentiation. Due to its broad tumor suppressive activity, it is not surprising that miR34a expression is altered in a wide variety of solid tumors and hematological malignancies. However, the mechanisms by which miR34a is regulated in these cancers is largely unknown.

View Article and Find Full Text PDF

Current inotropic agents in heart failure therapy associate with low benefit and significant adverse effects, including ventricular arrhythmias. Istaroxime, a novel Na/K-transporting ATPase inhibitor, also stimulates SERCA2a activity, which would confer improved inotropic and lusitropic properties with less proarrhythmic effects. We investigated hemodynamic, electrophysiological and potential proarrhythmic and antiarrhythmic effects of istaroxime in control and chronic atrioventricular block (CAVB) dogs sensitive to drug-induced Torsades de Pointes arrhythmias (TdP).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates GS-458967 (GS967), a selective inhibitor of late sodium current, for its ability to prevent Torsades de Pointes (TdP) arrhythmias in dogs with chronic atrioventricular block.
  • Experimental results show that GS967 effectively shortens repolarization in cardiac cells and completely eliminates TdP in most cases, while some early afterdepolarizations remain unaffected.
  • The findings suggest GS967 works by reducing spatial dispersion of repolarization, thereby interrupting the progression of arrhythmias rather than stopping their initial triggers.
View Article and Find Full Text PDF

Evodiae fructus is a widely used herbal drug in traditional Chinese medicine. Evodia extract was found to inhibit hERG channels. The aim of the current study was to identify hERG inhibitors in Evodia extract and to investigate their potential proarrhythmic effects.

View Article and Find Full Text PDF

Non-coding SNPs in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) locus have been linked with several autoimmune diseases, including rheumatoid arthritis, type I diabetes, and inflammatory bowel disease. However, the functional consequences of these SNPs are poorly characterized. Herein, we show in blood cells that SNPs in the PTPN2 locus are highly correlated with DNA methylation levels at four CpG sites downstream of PTPN2 and expression levels of the long non-coding RNA (lncRNA) LINC01882 downstream of these CpG sites.

View Article and Find Full Text PDF

The presence of the PTPN22 risk allele (1858T) is associated with several autoimmune diseases including rheumatoid arthritis (RA). Despite a number of studies exploring the function of PTPN22 in T cells, the exact impact of the PTPN22 risk allele on T-cell function in humans is still unclear. In this study, using RNA sequencing, we show that, upon TCR-activation, naïve human CD4 T cells homozygous for the PTPN22 risk allele overexpress a set of genes including CFLAR and 4-1BB, which are important for cytotoxic T-cell differentiation.

View Article and Find Full Text PDF