Magnetic resonance elastography (MRE) is a promising neuroimaging technique to probe tissue microstructure, which has revealed widespread softening with loss of structural integrity in the aging brain. Traditional MRE approaches assume mechanical isotropy. However, white matter is known to be anisotropic from aligned, myelinated axonal bundles, which can lead to uncertainty in mechanical property estimates in these areas when using isotropic MRE.
View Article and Find Full Text PDFBackground: Fetal alcohol spectrum disorders (FASD), a group of prevalent conditions resulting from prenatal alcohol exposure, affect the maturation of cerebral white matter as first identified with neuroimaging. However, traditional methods are unable to track subtle microstructural alterations to white matter. This preliminary study uses a highly sensitive and clinically translatable magnetic resonance elastography (MRE) protocol to assess brain tissue microstructure through its mechanical properties following an exercise intervention in a rat model of FASD.
View Article and Find Full Text PDFIEEE Trans Med Imaging
March 2024
The inverse problem that underlies Magnetic Resonance Elastography (MRE) is sensitive to the measurement data and the quality of the results of this tissue elasticity imaging process can be influenced both directly and indirectly by measurement noise. In this work, we apply a coupled adjoint field formulation of the viscoelastic constitutive parameter identification problem, where the indirect influence of noise through applied boundary conditions is avoided. A well-posed formulation of the coupled field problem is obtained through conditions applied to the adjoint field, relieving the computed displacement field from kinematic errors on the boundary.
View Article and Find Full Text PDFIntrinsic actuation magnetic resonance elastography (MRE) is a phase-contrast MRI technique that allows for in vivo quantification of mechanical properties of the brain by exploiting brain motion that arise naturally due to the cardiac pulse. The mechanical properties of the brain reflect its tissue microstructure, making it a potentially valuable parameter in studying brain disease. The main purpose of this study was to assess the feasibility of reconstructing the viscoelastic properties of the brain using high-quality 7 T MRI displacement measurements, obtained using displacement encoding with stimulated echoes (DENSE) and intrinsic actuation.
View Article and Find Full Text PDFBackground: Fetal Alcohol Spectrum Disorders (FASD) encompass a group of highly prevalent conditions resulting from prenatal alcohol exposure. Alcohol exposure during the third trimester of pregnancy overlapping with the brain growth spurt is detrimental to white matter growth and myelination, particularly in the corpus callosum, ultimately affecting tissue integrity in adolescence. Traditional neuroimaging techniques have been essential for assessing neurodevelopment in affected youth; however, these methods are limited in their capacity to track subtle microstructural alterations to white matter, thus restricting their effectiveness in monitoring therapeutic intervention.
View Article and Find Full Text PDFBackground: The societal cost of shoulder disabilities in our aging society keeps rising. Providing biomarkers of early changes in the microstructure of rotator cuff (RC) muscles might improve surgical planning. Elevation angle (E1A) and pennation angle (PA) assessed by ultrasound change with RC tears.
View Article and Find Full Text PDFIdentification of the mechanical properties of a viscoelastic material depends on characteristics of the observed motion field within the object in question. For certain physical and experimental configurations and certain resolutions and variance within the measurement data, the viscoelastic properties of an object may become non-identifiable. Elastographic imaging methods seek to provide maps of these viscoelastic properties based on displacement data measured by traditional imaging techniques, such as magnetic resonance and ultrasound.
View Article and Find Full Text PDFIn recent years, cellular biomechanical properties have been investigated as an alternative to morphological assessments for oocyte selection in reproductive science. Despite the high relevance of cell viscoelasticity characterization, the reconstruction of spatially distributed viscoelastic parameter images in such materials remains a major challenge. Here, a framework for mapping viscoelasticity at the subcellular scale is proposed and applied to live mouse oocytes.
View Article and Find Full Text PDFMeasuring tissue parameters from increasingly sophisticated mechanical property models may uncover new contrast mechanisms with clinical utility. Building on previous work on in vivo brain MR elastography (MRE) with a transversely-isotropic with isotropic damping (TI-ID) model, we explore a new transversely-isotropic with anisotropic damping (TI-AD) model that involves six independent parameters describing direction-dependent behavior for both stiffness and damping. The direction of mechanical anisotropy is determined by diffusion tensor imaging and we fit three complex-valued moduli distributions across the full brain volume to minimize differences between measured and modeled displacements.
View Article and Find Full Text PDF.imaging assessments of skeletal muscle structure and function allow for longitudinal quantification of tissue health. Magnetic resonance elastography (MRE) non-invasively quantifies tissue mechanical properties, allowing for evaluation of skeletal muscle biomechanics in response to loading, creating a better understanding of muscle functional health.
View Article and Find Full Text PDFMagnetic resonance elastography (MRE) is an MRI technique for imaging the mechanical properties of brain in vivo, and has shown differences in properties between neuroanatomical regions and sensitivity to aging, neurological disorders, and normal brain function. Past MRE studies investigating these properties have typically assumed the brain is mechanically isotropic, though the aligned fibers of white matter suggest an anisotropic material model should be considered for more accurate parameter estimation. Here we used a transversely isotropic, nonlinear inversion algorithm (TI-NLI) and multiexcitation MRE to estimate the anisotropic material parameters of individual white matter tracts in healthy young adults.
View Article and Find Full Text PDFBackground: Quantifying the rotator cuff (RC) muscles' viscoelasticity could provide outcome relevant information in patients with RC tears. MR-elastography requires robust diffusion-tensor imaging (DTI) to account for tissue anisotropy in muscles stiffness computation.
Purpose: To assess the repeatability of DTI parameters in the supraspinatus and infraspinatus muscles and to explore DTI tractography conformity with the muscles' anatomy.
The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions.
View Article and Find Full Text PDFEasily computable quality metrics for measured medical data at point-of-care are important for imaging technologies involving offline reconstruction. Accordingly, we developed a new data quality metric fortransversely-isotropic (TI) magnetic resonance elastography (MRE) based on a generalization of the widely accepted octahedral shear-strain calculation. The metric uses MRE displacement data and an estimate of the TI property field to yield a 'stability map' which predicts regions of low versus high accuracy in the resulting material property reconstructions.
View Article and Find Full Text PDFAim: A Conjugate Gradient implementation of the Digital Image Correlation Elastography method is presented.
Method: The gradient is calculated using the adjoint method, requiring only two forward solutions regardless of the number of mechanical properties to reconstruct. A power-law based multi-frequency viscoelastic model is used to relate the reconstructed mechanical properties and the Digital Image Correlation surface displacement measurements.
Magnetic Resonance Elastography allows noninvasive visualization of tissue mechanical properties by measuring the displacements resulting from applied stresses, and fitting a mechanical model. Poroelasticity naturally lends itself to describing tissue - a biphasic medium, consisting of both solid and fluid components. This article reviews the theory of poroelasticity, and shows that the spatial distribution of hydraulic permeability, the ease with which the solid matrix permits the flow of fluid under a pressure gradient, can be faithfully reconstructed without spatial priors in simulated environments.
View Article and Find Full Text PDFStandard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e.
View Article and Find Full Text PDFIn this study, we describe numerical implementation of a heterogenous, nearly incompressible, transverse isotropic (NITI) finite element (FE) model with key advantages for use in MR elastography of fibrous soft tissue. MR elastography (MRE) estimates heterogenous property distributions from MR-measured harmonic motion fields based on assumed mechanical models of tissue response. Current MRE property estimation methods usually assume isotropic properties, which cause inconsistencies arising from model-data mismatch when anisotropy is present.
View Article and Find Full Text PDFIntrinsic actuation MR elastography (IA-MRE) exploits natural pulsations of the brain as a motion source to estimate mechanical property maps. The low frequency motion of IA-MRE introduces new considerations for inversion algorithms relative to traditional external actuation MRE. Specifically, inertial forces become very small, which leaves low frequency viscoelastic inversions with a non-unique scalar multiplier.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2017
The noninvasive imaging technique of magnetic resonance elastography (MRE) was used to estimate the power law behavior of the viscoelastic properties of the human brain in vivo. The mechanical properties for four volunteers are investigated using shear waves induced over a frequency range of 10-50Hz to produce a displacement field measured by magnetic resonance motion-encoding gradients. The average storage modulus (μ) reconstructed with non-linear inversion (NLI) increased from approximately 0.
View Article and Find Full Text PDFA numerical framework for interstitial fluid pressure imaging (IFPI) in biphasic materials is investigated based on three-dimensional nonlinear finite element poroelastic inversion. The objective is to reconstruct the time-harmonic pore-pressure field from tissue excitation in addition to the elastic parameters commonly associated with magnetic resonance elastography (MRE). The unknown pressure boundary conditions (PBCs) are estimated using the available full-volume displacement data from MRE.
View Article and Find Full Text PDFIEEE Trans Med Imaging
January 2017
We describe an efficient gradient computation for solving inverse problems arising in magnetic resonance elastography (MRE). The algorithm can be considered as a generalized 'adjoint method' based on a Lagrangian formulation. One requirement for the classic adjoint method is assurance of the self-adjoint property of the stiffness matrix in the elasticity problem.
View Article and Find Full Text PDFMagnetic resonance elastography (MRE) has shown promise in noninvasively capturing changes in mechanical properties of the human brain caused by neurodegenerative conditions. MRE involves vibrating the brain to generate shear waves, imaging those waves with MRI, and solving an inverse problem to determine mechanical properties. Despite the known anisotropic nature of brain tissue, the inverse problem in brain MRE is based on an isotropic mechanical model.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
Porous lattice structures are increasingly used for tissue and implant device design, and require precise structural characteristics such as stiffness, porosity, volume fraction and surface area. A non-uniform distribution of these properties may be required to suit design requirements or to match in-vivo conditions. Thus, porous lattice design is complex due to competing objectives from the distributed structural properties.
View Article and Find Full Text PDF