Objectives: Chronic hepatitis B virus (HBV) infection is a leading cause of liver disease and hepatocellular carcinoma. A key feature of HBV replication is the synthesis of the covalently close circular (ccc)DNA, not targeted by current treatments and whose elimination would be crucial for viral cure. To date, little is known about cccDNA formation.
View Article and Find Full Text PDFTissue fibrosis is a key driver of end-stage organ failure and cancer, overall accounting for up to 45% of deaths in developed countries. There is a large unmet medical need for antifibrotic therapies. Claudin-1 (CLDN1) is a member of the tight junction protein family.
View Article and Find Full Text PDFBackground & Aims: Despite recent approvals, the response to treatment and prognosis of patients with advanced hepatocellular carcinoma (HCC) remain poor. Claudin-1 (CLDN1) is a membrane protein that is expressed at tight junctions, but it can also be exposed non-junctionally, such as on the basolateral membrane of the human hepatocyte. While CLDN1 within tight junctions is well characterized, the role of non-junctional CLDN1 and its role as a therapeutic target in HCC remains unexplored.
View Article and Find Full Text PDFChronic hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC) world-wide. The molecular mechanisms of viral hepatocarcinogenesis are still partially understood. Here, we applied two complementary single-cell RNA-sequencing protocols to investigate HBV-HCC host cell interactions at the single cell level of patient-derived HCC.
View Article and Find Full Text PDFObjective: Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related mortality with chronic viral hepatitis and non-alcoholic steatohepatitis (NASH) as major aetiologies. Treatment options for HCC are unsatisfactory and chemopreventive approaches are absent. Chronic hepatitis C (CHC) results in epigenetic alterations driving HCC risk and persisting following cure.
View Article and Find Full Text PDFTight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is a metabolic disorder due to increased accumulation of fat in the liver and in many cases to enhanced inflammation. Although the contribution of inflammation in the pathogenesis of NAFLD is well established, the cytokines that are involved and how they influence liver transformation are still poorly characterized. In addition, with other modifiers, inflammation influences NAFLD progression to liver cirrhosis and hepatocellular carcinoma, demonstrating the need to find new molecular targets with potential future therapeutic applications.
View Article and Find Full Text PDFBackground & Aims: Chronic hepatitis C virus (HCV) infection is an important risk factor for hepatocellular carcinoma (HCC). Despite effective antiviral therapies, the risk for HCC is decreased but not eliminated after a sustained virologic response (SVR) to direct-acting antiviral (DAA) agents, and the risk is higher in patients with advanced fibrosis. We investigated HCV-induced epigenetic alterations that might affect risk for HCC after DAA treatment in patients and mice with humanized livers.
View Article and Find Full Text PDFObjective: Hepatitis D virus (HDV) is a circular RNA virus coinfecting hepatocytes with hepatitis B virus. Chronic hepatitis D results in severe liver disease and an increased risk of liver cancer. Efficient therapeutic approaches against HDV are absent.
View Article and Find Full Text PDFChronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) was identified as a DNA sensor.
View Article and Find Full Text PDFPurpose: To conduct a feasibility study on the application of the γ-H2AX foci assay as an exposure biomarker in a prospective multicentre paediatric radiology setting.
Materials And Methods: A set of in vitro experiments was performed to evaluate technical hurdles related to biological sample collection in a paediatric radiology setting (small blood sample volume), processing and storing of blood samples (effect of storing blood at 4°C), the reliability of foci scoring for low-doses (merge γ-H2AX/53BP1 scoring), as well as the impact of contrast agent administration as potential confounding factor. Given the exploratory nature of this study and the ethical constraints related to paediatric blood sampling, blood samples from adult volunteers were used for these experiments.
Intensity modulated radiotherapy (IMRT) is one of the modern conformal radiotherapies that is widely used within the context of cancer patient treatment. It uses multiple radiation beams targeted to the tumor, however, large volumes of the body receive low doses of irradiation. Using γ-H2AX and global genome expression analysis, we studied the biological responses induced by low doses of ionizing radiation in prostate cancer patients following IMRT.
View Article and Find Full Text PDFThe health effects arising from exposure to low doses of ionizing radiation are of particular concern, mainly due to the increased application of diagnostic and therapeutic X-ray modalities. The mechanisms behind the cell and tissue responses to low doses remain to be elucidated. Accumulating evidence suggests that low doses of ionizing radiation induce activation of the immune response; however, the processes involved have yet to be adequately investigated.
View Article and Find Full Text PDFPurpose: Health risks from exposure to low doses of ionizing radiation (IR) are becoming a concern due to the rapidly growing medical applications of X-rays. Using microarray techniques, this study aims for a better understanding of whole blood response to low and high doses of IR.
Materials And Methods: Aliquots of peripheral blood samples were irradiated with 0, 0.
Ionizing radiation is a known human carcinogen that can induce a variety of biological effects depending on the physical nature, duration, doses and dose-rates of exposure. However, the magnitude of health risks at low doses and dose-rates (below 100mSv and/or 0.1mSvmin(-1)) remains controversial due to a lack of direct human evidence.
View Article and Find Full Text PDFWhen incubated under simulated microgravity (s-microg), endothelial cells (EC) form tubular structures that resemble vascular intimas. This delayed formation of 3D EC structures begins between the 5th and 7th day of culturing EC under conditions of s-microg, when double-row cell assemblies become visible. With the aim of learning about this initial phase of tubular structure formation, we found that NFkappaBp65 protein content was similar in all cell populations, but gene and protein expression of phosphokinase A catalytic subunit, phosphokinase Calpha, and extracellular signal-regulated kinases 1 and 2 was altered in cells cultured under s-microg.
View Article and Find Full Text PDF