Publications by authors named "Hountondji C"

Enzymatic hydrolysis of bovine and human hemoglobin generates a diversity of bioactive peptides, mainly recognized for their antimicrobial properties. However, antimicrobial peptides stand out for their ability to specifically target cancer cells while preserving rapidly proliferating healthy cells. This study focuses on the production of bioactive peptides from hemoglobin and evaluates their anticancer potential using two distinct approaches.

View Article and Find Full Text PDF

The GGQ minidomain of the ribosomal protein eL42 was previously shown to contact the CCA-arm of P-site bound tRNA in human ribosome, indicating a possible involvement of the protein in the catalytic activity. Here, using Schizosaccharomyces pombe (S. pombe) cells, we demonstrate that the GGQ minidomain and neighboring region of eL42 is critical for the ribosomal function.

View Article and Find Full Text PDF

In this report, we have used periodate-oxidized tRNA (tRNAox) as an affinity laleling reagent to demonstrate that: (i) the bL12 protein contacts the CCA-arm of P-site bound tRNA on the Escherichia coli 70S ribosomes; (ii) the stoichiometry of labelling is one molecule of tRNAox bound to one polypeptide chain of endogenous bL12; (iii) cross-linking in situ of bL12 with tRNAox on the ribosomes provokes the loss of activity; (iv) intact tRNA protects bL12 in the 70S ribosomes against cross-linking with tRNAox; (v) both tRNAox and pyridoxal 5'-phosphate (PLP) compete for the same or for proximal cross-linking site(s) on bL12 inside the ribosome; (vi) the stoichiometry of cross-linking of PLP to the recombinant E. coli bL12 protein is one molecule of PLP covalently bound per polypeptide chain; (vii) the amino acid residue of recombinant bL12 cross-linked with PLP is Lys-65; (viii) Lys-65 of E. coli bL12 corresponds to Lys-53 of eL42 which was previously shown to cross-link with P-site bound tRNAox on human 80S ribosomes in situ; (ix) finally, E.

View Article and Find Full Text PDF

Background: We have previously demonstrated that the eukaryote-specific ribosomal protein eL42 of the human 80S ribosome contains seven monomethylated residues, among which are the Gln-51 and Lys-53 residues contained in the 47GFGGQTK53 sequence conserved in all eukaryotic 80S ribosomes. This sequence contains the methylated and universally conserved GGQ motif common for all class-1 translation termination factors responsible for stop codon recognition and for triggering the hydrolysis of the P site-bound peptidyl-tRNA. We have also recently reported a model of ribosomal ternary eL42-tRNA-eRF1 complex where specific regions of all three macromolecules (the comparably flexible GGQ domains of eRF1 and eL42 and the CCA-arm of tRNA) are involved in interactions.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on understanding the arrangement of components in translation termination complexes on the human 80S ribosome using site-directed cross-linking with modified tRNA and mRNA.
  • The findings revealed that eRF3 remains bound to the ribosome even after GTP hydrolysis, indicating its consistent presence during termination.
  • Additionally, the research provided detailed insights into the positioning of key elements like the 3'-terminus of tRNA and the mRNA stop signal, which do not change after peptide release, enhancing the understanding of protein synthesis termination in mammals.
View Article and Find Full Text PDF

In this report, we have demonstrated that the poly(U)-dependent poly(Phe) synthesis activity of elongator factor Tu (EF-Tu) from the enacyloxin producing strain Frateuria sp. W-315 is inhibited by the antibiotic similarly to that of Escherichia coli EF-Tu. The inhibitory effect of enacyloxin observed in a purified system was the same as that obtained with an S30 extract from E.

View Article and Find Full Text PDF

We have demonstrated previously that the E-site specific protein RPL36AL present in human ribosomes can be crosslinked with the CCA-end of a P-tRNA in situ. Here we report the following: (i) We modeled RPL36AL into the structure of the archaeal ortholog RPL44E extracted from the known X-ray structure of the 50S subunit of Haloarcula marismortui. Superimposing the obtained RPL36AL structure with that of P/E tRNA observed in eukaryotic 80S ribosomes suggested that RPL36AL might in addition to its CCA neighbourhood interact with the inner site of the tRNA elbow similar to an interaction pattern known from tRNA•synthetase pairs.

View Article and Find Full Text PDF

Nucleotides of 28S rRNA involved in binding of the human 80S ribosome with acceptor ends of the A site and the P site tRNAs were determined using two complementary approaches, namely, cross-linking with application of tRNA(Asp) analogues substituted with 4-thiouridine in position 75 or 76 and hydroxyl radical footprinting with the use of the full sized tRNA and the tRNA deprived of the 3'-terminal trinucleotide CCA. In general, these 28S rRNA nucleotides are located in ribosomal regions homologous to the A, P and E sites of the prokaryotic 50S subunit. However, none of the approaches used discovered interactions of the apex of the large rRNA helix 80 with the acceptor end of the P site tRNA typical with prokaryotic ribosomes.

View Article and Find Full Text PDF

Previously we have shown that the CCA end of a P-tRNA can be crosslinked with the RPL36AL protein of the large subunit of mammalian ribosomes; it belongs to the L44e protein family present in all eukaryotic and archaeal ribosomes. Here we confirm and extend this finding and demonstrate that: 1) this crosslink is specific for a tRNA at the P/E hybrid site, as a tRNA in all other tRNA positions of pre-translocational ribosomes could not be crosslinked with a ribosomal protein, 2) the crosslink was formed most efficiently with C74 and C75 of P/E-tRNA, but could also connect the ultimate A of this tRNA with Lys53 of protein RPL36AL, 3) this protein contains seven monomethylated residues (three lysyl and three arginyl residues, as well as glutaminyl residue 51), 4) Q51 is part of a conserved GGQ motif in the L44e proteins in eukaryotic 80S ribosomes that is identical to the universally conserved motif of release factors implicated in promoting peptidyl-tRNA hydrolysis, and 5) the large number of modifications, in which some of the residues were methylated to about 50 %, might indicate that protein RPL36AL is a preferential target for regulation.

View Article and Find Full Text PDF

Air pollution effect on humans represents a major public health problem. Exposure to genotoxic compounds in the ambient air is evaluated using different biomarkers. In the present study we assessed DNA-adducts levels in apparently healthy people living and working in the city of Cotonou (Benin) in which exposure to air pollutants such as benzene and polycyclic aromatic hydrocarbons (PAHs) mainly benzo(a)pyrene has been evidenced.

View Article and Find Full Text PDF

Periodate-oxidized tRNA (tRNAox), the 2',3'-dialdehyde derivative of tRNA, was used as a zero-length active site-directed affinity labeling reagent, to covalently label proteins at the binding site for the 3'-end of tRNA on human 80S ribosomes. When human 80S ribosomes were reacted with tRNA(Asp)ox positioned at the P-site, in the presence of an appropriate 12 mer mRNA, a set of two tRNAox-labeled ribosomal proteins (rPs) was observed. The majorily labeled protein was identified as the large subunit rP L36a-like (RPL36AL) by means of mass spectrometry.

View Article and Find Full Text PDF

The correct amino acid sequence of E. coli isoleucyl-tRNA synthetase (IleRS) was established by means of peptide mapping by MALDI mass spectrometry, using a set of four endoproteases (trypsin, LysC, AspN and GluC). Thereafter, the active site of IleRS was mapped by affinity labeling with reactive analogs of the substrates.

View Article and Find Full Text PDF

This study is directed towards an important problem concerning the organization of the peptidyl transferase center (PTC) on the mammalian ribosome that cannot be studied by X-ray analysis since crystals of 80S ribosomes are still unavailable. Here, we investigated the arrangement of the 3'-end of tRNA in the 80S ribosomal A and P sites using a tRNA(Asp) analogue that bears a 4-thiouridine (s(4)U) attached to the 3'-terminal adenosine. It was shown that an additional nucleotide s(4)U77 on the 3'-end does not impede codon-dependent binding of the tRNA to the A and P sites of 80S ribosome.

View Article and Find Full Text PDF

Valyl-tRNA synthetase (ValRS) from Escherichia coli undergoes covalent valylation by a donor valyl adenylate synthesized by the enzyme itself. ValRS could also be modified, although to a lesser extent, by the noncognate isosteric substrate L-threonine from a donor threonyl adenylate synthesized by the synthetase itself, or by the nonsubstrate methionine from methionyl adenylate produced by catalytic amounts of methionyl-tRNA synthetase. MALDI mass spectrometry analysis designated lysines 154, 162, 170, 533, 554, 593, 894, 930, and 940 of ValRS as the target residues for the attachment of valine.

View Article and Find Full Text PDF

Trapping malate dehydrogenase from the extremely halophilic archaeon Haloarcula marismortui in "dry" salt crystals protects the enzyme against thermal denaturation. Similar protection was not observed for the homologous mesophilic enzyme. In the case of transfer RNA molecules, high salt concentration plays a protective role against thermal degradation allowing activity to be recovered.

View Article and Find Full Text PDF

In the context of proteome analysis, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) can fulfil the two tasks of primary structure verification and protein identification. As an illustration of the first of these tasks, the sequence of Eschericha coli isoleucyl-tRNA synthetase, a protein with 15 reported sequence conflicts, has been established by means of MALDI mass mapping. The identification of mitochondrial proteins participating in a yeast supramolecular complex exhibiting NADH dehydrogenase activity highlights the performances of MALDI-MS for the second task.

View Article and Find Full Text PDF

Methionyl-tRNA synthetase (MetRS) from Bacillus stearothermophilus was shown to undergo covalent methionylation by a donor methionyl-adenylate, the mixed carboxylic-phosphoric acid anhydride synthesized by the enzyme itself. Covalent reaction of methionyl-adenylate with the synthetase or other proteins proceeds through the formation of an isopeptide bond between the carboxylate of the amino acid and the epsilon-NH2 group of lysyl residues. The stoichiometries of labeling, as followed by TCA precipitation, were 2.

View Article and Find Full Text PDF

Activation of the neuronal Ras GDP/GTP exchange factor (GEF) CDC25Mm/GRF1 is known to be associated with phosphorylation of serine/threonine. To increase our knowledge of the mechanism involved, we have analyzed the ability of several serine/threonine kinases to phosphorylate CDC25Mm in vivo and in vitro. We could demonstrate the involvement of cAMP-dependent protein kinase (PKA) in the phosphorylation of CDC25Mm in fibroblasts overexpressing this RasGEF as well as in mouse brain synaptosomal membranes.

View Article and Find Full Text PDF

Bromomethyl ketone derivatives of L-valine (VBMK), L-isoleucine (IBMK), L-norleucine (NleBMK) and L-phenylalanine (FBMK) were synthesized. These reagents were used for qualitative comparative labeling of Escherichia coli valyl-tRNA synthetase (ValRS), an enzyme with Val/Ile editing activity, in order to identify the binding sites for L-valine or noncognate amino acids. Labeling of E.

View Article and Find Full Text PDF

RNA:pseudouridine synthetase (Pus1) from Saccharomyces cerevisiae is a multisite specific enzyme that catalyzes the formation of pseudouridine at positions 34 and 36 of intron-containing precursor tRNAIle and at positions 27 and/or 28 of several yeast tRNAs. In this paper we demonstrate that the purified recombinant Pus1, expressed in Escherichia coli, contains one atom of zinc per 63-kDa monomer, as determined by atomic absorption spectroscopy. This zinc ion could not be removed by treatment with EDTA or urea.

View Article and Find Full Text PDF

Methionyl-adenylate, the mixed carboxylic-phosphoric acid anhydride synthesized by methionyl-tRNA synthetase (MetRS) is capable of reacting with this synthetase or other proteins, by forming an isopeptide bond with the epsilon-NH2 group of lysyl residues. It is proposed that the mechanism for the in vitro methionylation of MetRS might be accounted for by the in situ covalent reaction of methionyl-adenylate with lysine side chains surrounding the active center of the enzyme, as well as by exchange of the label between donor and acceptor proteins. Following the incorporation of 7.

View Article and Find Full Text PDF

Recent affinity labeling studies have revealed that dimeric histidyl-tRNA synthetase from Escherichia coli displayed half-of-the-sites reactivity toward labeling with pyridoxal 5'-phosphate [Kalogerakos, T., Hountondji, C., Berne, P.

View Article and Find Full Text PDF

Pyridoxal 5'-phosphate (PLP) and pyridoxal 5'-diphosphate (PLDP) were used to identify lysyl residues at the phosphate-binding locus in the lysS-encoded and the lysU-encoded lysyl-tRNA synthetases (LysRSs and LysRSu, respectively) from Escherichia coli. Incubation of LysRSs with either reagent, followed by borohydride reduction, resulted in a time-dependent covalent incorporation of the reagent, accompanied with the loss of both tRNA(Lys) aminoacylation and lysine-dependent ATP-PPi exchange activities. By contrast, LysRSu activity was insensitive to prolonged incubation with either reagent, possibly reflecting a difference at the phosphate-binding locus in the two enzyme species.

View Article and Find Full Text PDF

Lysyl-tRNA synthetase (LysRS), a representative of the class 2 aminoacyl-tRNA synthetases, occurs as two species in Escherichia coli: LysRSs and LysRSu. To identify the ATP-binding site in this enzyme, we have applied affinity labeling with reactive adenine nucleotide analogs. Incubation of either enzyme species with adenosine di- or triphosphopyridoxal, followed by borohydride reduction, resulted in a time-dependent incorporation of the reagent, accompanied with the loss of both tRNA(Lys) aminoacylation, and lysine-dependent isotopic ATP-PPi exchange activities.

View Article and Find Full Text PDF

The isotopic [32P]PPi-ATP exchange activity of isoleucyl-, valyl-, histidyl-, tyrosyl- and methionyl-tRNA synthetases from Escherichia coli are lost upon incubation in the presence of pyridoxal-5'-phosphate (PLP). When the residual activity of either isoleucyl-, valyl- or methionyl-tRNA synthetase (monomeric truncated form) was plotted as a function of the number of PLP molecules incorporated per enzyme molecule, the plots obtained appeared biphasic. Below 50% inactivation of these enzymes, PLP incorporation varied linearly with the isotopic exchange measurements, and extrapolation of the first half of the plot indicated a stoichiometry of 1.

View Article and Find Full Text PDF