Publications by authors named "Houliston E"

cAMP-PKA signaling initiates the crucial process of oocyte meiotic maturation in many animals, but inhibits it in vertebrates. To address this 'cAMP paradox', we exchanged the key PKA substrate ARPP19 between representative species, the vertebrate Xenopus and the cnidarian Clytia, comparing its phosphorylation and function. We found that, as in Xenopus, Clytia maturing oocytes undergo ARPP19 phosphorylation on a highly conserved Gwl site, which inhibits PP2A and promotes M-phase entry.

View Article and Find Full Text PDF

During meiosis, DNA recombination allows the shuffling of genetic information between the maternal and paternal chromosomes. Recombination is initiated by double-strand breaks (DSBs) catalyzed by the conserved enzyme Spo11. How this crucial event is connected to other meiotic processes is unexpectedly variable depending on the species.

View Article and Find Full Text PDF

The hydrozoan species Clytia hemisphaerica was selected in the mid-2000s to address the cellular and molecular basis of body axis specification in a cnidarian, providing a reliable daily source of gametes and building on a rich foundation of experimental embryology. The many practical advantages of this species include genetic uniformity of laboratory jellyfish, derived clonally from easily-propagated polyp colonies. Phylogenetic distance from other laboratory models adds value in providing an evolutionary perspective on many biological questions.

View Article and Find Full Text PDF

We present an organism-wide, transcriptomic cell atlas of the hydrozoan medusa and describe how its component cell types respond to perturbation. Using multiplexed single-cell RNA sequencing, in which individual animals were indexed and pooled from control and perturbation conditions into a single sequencing run, we avoid artifacts from batch effects and are able to discern shifts in cell state in response to organismal perturbations. This work serves as a foundation for future studies of development, function, and regeneration in a genetically tractable jellyfish species.

View Article and Find Full Text PDF

The jellyfish species (Cnidaria, Hydrozoa) has emerged as a new experimental model animal in the last decade. Favorable characteristics include a fully transparent body suitable for microscopy, daily gamete production and a relatively short life cycle. Furthermore, whole genome sequence assembly and efficient gene editing techniques using CRISPR/Cas9 have opened new possibilities for genetic studies.

View Article and Find Full Text PDF

The cnidarian "planula" larva shows radial symmetry around a polarized, oral-aboral, body axis and comprises two epithelia cell layers, ectodermal and endodermal. This simple body plan is set up during gastrulation, a process which proceeds by a variety of modes amongst the diverse cnidarian species. In the hydrozoan laboratory model Clytia hemisphaerica, gastrulation involves a process termed unipolar cell ingression, in which the endoderm derives from mass ingression of individual cells via a process of epithelial-mesenchymal transition (EMT) around the future oral pole of an epithelial embryo.

View Article and Find Full Text PDF

Jellyfish, with their tetraradial symmetry, offer a novel paradigm for addressing patterning mechanisms during regeneration. Here we show that an interplay between mechanical forces, cell migration and proliferation allows jellyfish fragments to regain shape and functionality rapidly, notably by efficient restoration of the central feeding organ (manubrium). Fragmentation first triggers actomyosin-powered remodeling that restores body umbrella shape, causing radial smooth muscle fibers to converge around 'hubs' which serve as positional landmarks.

View Article and Find Full Text PDF

During oocyte development, meiosis arrests in prophase of the first division for a remarkably prolonged period firstly during oocyte growth, and then when awaiting the appropriate hormonal signals for egg release. This prophase arrest is finally unlocked when locally produced maturation initiation hormones (MIHs) trigger entry into M-phase. Here, we assess the current knowledge of the successive cellular and molecular mechanisms responsible for keeping meiotic progression on hold.

View Article and Find Full Text PDF

The reproductive hormones that trigger oocyte meiotic maturation and release from the ovary vary greatly between animal species. Identification of receptors for these maturation-inducing hormones (MIHs) and understanding how they initiate the largely conserved maturation process remain important challenges. In hydrozoan cnidarians including the jellyfish Clytia hemisphaerica, MIH comprises neuropeptides released from somatic cells of the gonad.

View Article and Find Full Text PDF

In Cnidaria, modes of gastrulation to produce the two body layers vary greatly between species. In the hydrozoan species Clytia hemisphaerica gastrulation involves unipolar ingression of presumptive endoderm cells from an oral domain of the blastula, followed by migration of these cells to fill the blastocoel with concomitant narrowing of the gastrula and elongation along the oral-aboral axis. We developed a 2D computational boundary model capable of simulating the morphogenetic changes during embryonic development from early blastula stage to the end of gastrulation.

View Article and Find Full Text PDF

Jellyfish (medusae) are a distinctive life-cycle stage of medusozoan cnidarians. They are major marine predators, with integrated neurosensory, muscular and organ systems. The genetic foundations of this complex form are largely unknown.

View Article and Find Full Text PDF

Oocyte meiotic maturation is crucial for sexually reproducing animals, and its core cytoplasmic regulators are highly conserved between species. By contrast, the few known maturation-inducing hormones (MIHs) that act on oocytes to initiate this process are highly variable in their molecular nature. Using the hydrozoan jellyfish species and , which undergo oocyte maturation in response to dark-light and light-dark transitions, respectively, we deduced amidated tetrapeptide sequences from gonad transcriptome data and found that synthetic peptides could induce maturation of isolated oocytes at nanomolar concentrations.

View Article and Find Full Text PDF

Across the animal kingdom, environmental light cues are widely involved in regulating gamete release, but the molecular and cellular bases of the photoresponsive mechanisms are poorly understood. In hydrozoan jellyfish, spawning is triggered by dark-light or light-dark transitions acting on the gonad, and is mediated by oocyte maturation-inducing neuropeptide hormones (MIHs) released from the ectoderm. We determined in that blue-cyan light triggers spawning in isolated gonads.

View Article and Find Full Text PDF

In situ hybridization is a widely employed technique allowing spatial visualization of gene expression in fixed specimens. It has greatly advanced our understanding of biological processes, including developmental regulation. In situ protocols are today routinely followed in numerous laboratories, and although details might change, they all include a hybridization step, where specific antisense RNA or DNA probes anneal to the target nucleic acid sequence.

View Article and Find Full Text PDF

The fresh water polyp Hydra provides textbook experimental demonstration of positional information gradients and regeneration processes. Developmental biologists are thus familiar with Hydra, but may not appreciate that it is a relatively simple member of the Hydrozoa, a group of mostly marine cnidarians with complex and diverse life cycles, exhibiting extensive phenotypic plasticity and regenerative capabilities. Hydrozoan species offer extensive opportunities to address many developmental mechanisms relevant across the animal kingdom.

View Article and Find Full Text PDF

The germ cell lineage in is specified by the inheritance of germ plasm that assembles within the mitochondrial cloud or Balbiani body in stage I oocytes. Specific RNAs, such as , localize to the germ plasm. has the essential germline function of blocking somatic gene expression and thus preventing Primordial Germ Cell (PGC) loss and sterility.

View Article and Find Full Text PDF

Until recently the set of "model" species used commonly for cell biology was limited to a small number of well-understood organisms, and developing a new model was prohibitively expensive or time-consuming. With the current rapid advances in technology, in particular low-cost high-throughput sequencing, it is now possible to develop molecular resources fairly rapidly. Wider sampling of biological diversity can only accelerate progress in addressing cellular mechanisms and shed light on how they are adapted to varied physiological contexts.

View Article and Find Full Text PDF

We have used Digital Gene Expression analysis to identify, without bilaterian bias, regulators of cnidarian embryonic patterning. Transcriptome comparison between un-manipulated Clytia early gastrula embryos and ones in which the key polarity regulator Wnt3 was inhibited using morpholino antisense oligonucleotides (Wnt3-MO) identified a set of significantly over and under-expressed transcripts. These code for candidate Wnt signaling modulators, orthologs of other transcription factors, secreted and transmembrane proteins known as developmental regulators in bilaterian models or previously uncharacterized, and also many cnidarian-restricted proteins.

View Article and Find Full Text PDF

Green fluorescent proteins (GFPs) and calcium-activated photoproteins of the aequorin/clytin family, now widely used as research tools, were originally isolated from the hydrozoan jellyfish Aequora victoria. It is known that bioluminescence resonance energy transfer (BRET) is possible between these proteins to generate flashes of green light, but the native function and significance of this phenomenon is unclear. Using the hydrozoan Clytia hemisphaerica, we characterized differential expression of three clytin and four GFP genes in distinct tissues at larva, medusa and polyp stages, corresponding to the major in vivo sites of bioluminescence (medusa tentacles and eggs) and fluorescence (these sites plus medusa manubrium, gonad and larval ectoderms).

View Article and Find Full Text PDF

Functional and morphological planar cell polarity (PCP) oriented along the oral-aboral body axis is clearly evident in the ectoderm of torpedo-shaped planula larvae of hydrozoan cnidarians such as Clytia hemisphaerica. Ectodermal epithelial cells bear a single motile cilium the beating of which is coordinated between cells, causing directional swimming towards the blunt, aboral pole. We have characterised PCP during Clytia larval development and addressed its molecular basis.

View Article and Find Full Text PDF

Striated muscles are present in bilaterian animals (for example, vertebrates, insects and annelids) and some non-bilaterian eumetazoans (that is, cnidarians and ctenophores). The considerable ultrastructural similarity of striated muscles between these animal groups is thought to reflect a common evolutionary origin. Here we show that a muscle protein core set, including a type II myosin heavy chain (MyHC) motor protein characteristic of striated muscles in vertebrates, was already present in unicellular organisms before the origin of multicellular animals.

View Article and Find Full Text PDF

The separation of the germ line from the soma is a classic concept in animal biology, and depending on species is thought to involve fate determination either by maternally localized germ plasm ("preformation" or "maternal inheritance") or by inductive signaling (classically termed "epigenesis" or "zygotic induction"). The latter mechanism is generally considered to operate in non-bilaterian organisms such as cnidarians and sponges, in which germ cell fate is determined at adult stages from multipotent stem cells. We have found in the hydrozoan cnidarian Clytia hemisphaerica that the multipotent "interstitial" cells (i-cells) in larvae and adult medusae, from which germ cells derive, express a set of conserved germ cell markers: Vasa, Nanos1, Piwi and PL10.

View Article and Find Full Text PDF

Planar cell polarity (PCP), the alignment of cells within 2D tissue planes, involves a set of core molecular regulators highly conserved between animals and cell types. These include the transmembrane proteins Frizzled (Fz) and VanGogh and the cytoplasmic regulators Dishevelled (Dsh) and Prickle. It is widely accepted that this core forms part of a 'PCP pathway' for signal transduction, which can affect cell morphology through activation of an evolutionary ancient regulatory module involving Rho family GTPases and Myosin II, and/or the JNK kinase cascade.

View Article and Find Full Text PDF

In fully grown oocytes, meiosis is arrested at first prophase until species-specific initiation signals trigger maturation. Meiotic resumption universally involves early activation of M phase-promoting factor (Cdc2 kinase-Cyclin B complex, MPF) by dephosphorylation of the inhibitory Thr14/Tyr15 sites of Cdc2. However, underlying mechanisms vary.

View Article and Find Full Text PDF

Poc1 (Protein of Centriole 1) proteins are highly conserved WD40 domain-containing centriole components, well characterized in the alga Chlamydomonas, the ciliated protazoan Tetrahymena, the insect Drosophila and in vertebrate cells including Xenopus and zebrafish embryos. Functions and localizations related to the centriole and ciliary axoneme have been demonstrated for Poc1 in a range of species. The vertebrate Poc1 protein has also been reported to show an additional association with mitochondria, including enrichment in the specialized "germ plasm" region of Xenopus oocytes.

View Article and Find Full Text PDF