Distal hereditary motor neuronopathies (dHMN) are a genetically heterogeneous group of neuromuscular disorders caused by anterior horn cell degeneration and progressive distal muscle weakness. A heterozygous missense variant in FBXO38 has been previously described in two families affected by autosomal-dominant dHMN. In this paper, we describe a homozygous missense variant in FBXO38 (c.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
December 2019
Hereditary spastic paraplegia (HSP) describes a heterogeneous group of genetic neurodegenerative diseases characterised by progressive spasticity of the lower limbs. The pathogenic mechanism, associated clinical features, and imaging abnormalities vary substantially according to the affected gene and differentiating HSP from other genetic diseases associated with spasticity can be challenging. Next generation sequencing-based gene panels are now widely available but have limitations and a molecular diagnosis is not made in most suspected cases.
View Article and Find Full Text PDFAMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE).
View Article and Find Full Text PDFmutations are a rare, but potentially treatable, cause of thiamine deficiency. Diagnosis is challenging given the phenotypic overlap that exists with other metabolic and neurological disorders. We report a case of -related disease presenting with Leigh-like syndrome and review the diagnostic utility of thiamine pyrophosphate (TPP) blood measurement.
View Article and Find Full Text PDFObjective: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy.
Methods: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding.
Approximately 2.4% of the human mitochondrial DNA (mtDNA) genome exhibits common homoplasmic genetic variation. We analyzed 12,975 whole-genome sequences to show that 45.
View Article and Find Full Text PDFCharcot-Marie-Tooth (CMT) is a common neuropathy, and hereditary motor and sensory neuropathy with proximal predominance (HMSN-P) is a recently described rare neuromuscular disease. Although many genes have been implicated for CMT, TFG is the only known HMSN-P-causing gene. Within the framework of diagnostic criteria, clinical variation is evident among CMT-diagnosed and also HMSN-P-diagnosed individuals.
View Article and Find Full Text PDFParkinsonism Relat Disord
August 2019
Biotin-thiamine responsive basal ganglia disease (BTRBGD) is an autosomal recessive neurometabolic disorder with poor genotype-phenotype correlation, caused by mutations in the gene on chromosome 2q36.6. The disease is characterized by three stages: stage 1 is a sub-acute encephalopathy often triggered by febrile illness; stage 2 is an acute encephalopathy with seizures, loss of motor function, developmental regression, dystonia, external ophthalmoplegia, dysphagia, and dysarthria; stage 3 is represented by chronic or slowly progressive encephalopathy.
View Article and Find Full Text PDFMitochondrial disorders are clinically and genetically heterogeneous and are associated with a variety of disease mechanisms. Defects of mitochondrial protein synthesis account for the largest subgroup of disorders manifesting with impaired respiratory chain capacity; yet, only a few have been linked to dysfunction in the protein components of the mitochondrial ribosomes. Here, we report a subject presenting with dyskinetic cerebral palsy and partial agenesis of the corpus callosum, while histochemical and biochemical analyses of skeletal muscle revealed signs of mitochondrial myopathy.
View Article and Find Full Text PDFWe identified individuals with variations in ACTL6B, a component of the chromatin remodeling machinery including the BAF complex. Ten individuals harbored bi-allelic mutations and presented with global developmental delay, epileptic encephalopathy, and spasticity, and ten individuals with de novo heterozygous mutations displayed intellectual disability, ambulation deficits, severe language impairment, hypotonia, Rett-like stereotypies, and minor facial dysmorphisms (wide mouth, diastema, bulbous nose). Nine of these ten unrelated individuals had the identical de novo c.
View Article and Find Full Text PDFIn the version of this article initially published, the name of author Wai Yan Yau was misspelled. The error has been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDFMultiple system atrophy (MSA) is a neurodegenerative disease characterised by glial cytoplasmic inclusions (GCIs), containing α-synuclein. Mutated COQ2, encoding an enzyme essential for co-enzyme Q10 (CoQ10) biosynthesis, has been associated with MSA. CoQ10 is an electron carrier in the mitochondrial electron transport chain (ETC) and antioxidant.
View Article and Find Full Text PDFObjectives: Hereditary sensory neuropathy type 1 (HSN1) is a rare, slowly progressive neuropathy causing profound sensory deficits and often severe motor loss. L-serine supplementation is a possible candidate therapy but the lack of responsive outcome measures is a barrier for undertaking clinical trials in HSN1. We performed a 12-month natural history study to characterise the phenotype of HSN1 and to identify responsive outcome measures.
View Article and Find Full Text PDFThe study of rare families with inherited pain insensitivity can identify new human-validated analgesic drug targets. Here, a 66-yr-old female presented with nil requirement for postoperative analgesia after a normally painful orthopaedic hand surgery (trapeziectomy). Further investigations revealed a lifelong history of painless injuries, such as frequent cuts and burns, which were observed to heal quickly.
View Article and Find Full Text PDFVAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release.
View Article and Find Full Text PDFLate-onset ataxia is common, often idiopathic, and can result from cerebellar, proprioceptive, or vestibular impairment; when in combination, it is also termed cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). We used non-parametric linkage analysis and genome sequencing to identify a biallelic intronic AAGGG repeat expansion in the replication factor C subunit 1 (RFC1) gene as the cause of familial CANVAS and a frequent cause of late-onset ataxia, particularly if sensory neuronopathy and bilateral vestibular areflexia coexist. The expansion, which occurs in the poly(A) tail of an AluSx3 element and differs in both size and nucleotide sequence from the reference (AAAAG) allele, does not affect RFC1 expression in patient peripheral and brain tissue, suggesting no overt loss of function.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
July 2019
Objective: The high degree of clinical overlap between atypical parkinsonian syndromes (APS) and Parkinson's disease (PD) makes diagnosis challenging. We aimed to identify novel diagnostic protein biomarkers of APS using multiplex proximity extension assay (PEA) testing.
Methods: Cerebrospinal fluid (CSF) samples from two independent cohorts, each consisting of APS and PD cases, and controls, were analysed for neurofilament light chain (NF-L) and Olink Neurology and Inflammation PEA biomarker panels.
Atypical parkinsonism syndromes are a heterogeneous group of neurodegenerative disorders that include corticobasal degeneration (CBD), Lewy body dementia (LBD), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). The APOE ε4 allele is a well-established risk factor for Alzheimer's disease; however, the role of APOE in atypical parkinsonism syndromes remains controversial. To examine the associations of APOE ε4 and ε2 alleles with risk of developing these syndromes, a total of 991 pathologically-confirmed atypical parkinsonism cases were genotyped using the Illumina NeuroChip array.
View Article and Find Full Text PDFRiboflavin transporter deficiency (RTD) is a rare neurological condition that encompasses the Brown-Vialetto-Van Laere and Fazio-Londe syndromes since the discovery of pathogenic mutations in the SLC52A2 and SLC52A3 genes that encode human riboflavin transporters RFVT2 and RFVT3. Patients present with a deteriorating progression of peripheral and cranial neuropathy that causes muscle weakness, vision loss, deafness, sensory ataxia, and respiratory compromise which when left untreated can be fatal. Considerable progress in the clinical and genetic diagnosis of RTDs has been made in recent years and has permitted the successful lifesaving treatment of many patients with high dose riboflavin supplementation.
View Article and Find Full Text PDFMov Disord Clin Pract
November 2018
Background: The C9orf72 hexanucleotide expansion is one of the latest discovered repeat expansion disorders related to neurodegeneration. Its association with the FTD/ALS spectrum disorders is well established, and it is considered to be one of the leading related genes. It has also been reported as a possible cause of several other phenotypes, including parkinsonism and other movement disorders.
View Article and Find Full Text PDFAmyloid-β transmission has been described in patients both with and without iatrogenic Creutzfeldt-Jakob disease; however, there is little information regarding the clinical impact of this acquired amyloid-β pathology during life. Here, for the first time, we describe in detail the clinical and neuroimaging findings in 3 patients with early onset symptomatic amyloid-β cerebral amyloid angiopathy following childhood exposure to cadaveric dura (by neurosurgical grafting in 2 patients and tumor embolization in a third). Our observations provide further in vivo evidence that cerebral amyloid angiopathy might be caused by transmission of amyloid-β seeds (prions) present in cadaveric dura and have diagnostic relevance for younger patients presenting with suspected cerebral amyloid angiopathy.
View Article and Find Full Text PDF