The subretina, composed of the choroid and the retinal pigment epithelium (RPE), plays a critical role in proper vision. In addition to phagocytosis of photoreceptor debris, the RPE shuttles oxygen and nutrients to the neuroretina. For their own energy production, RPE cells mainly rely on lactate, a major by-product of glycolysis.
View Article and Find Full Text PDFThis study aims to investigate the role of microRNA let-7f in the dysfunction and degeneration of retinal pigment epithelium (RPE) cells through the induction of senescence and oxidative stress. Furthermore, we explore whether let-7f inhibition can protect these cells against sodium iodate (SI)-induced oxidative stress. Oxidative stress and let-7f expression are reciprocally regulated in retinal pigment epithelial cells.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) have established their position as nonviral vectors for gene therapy. Tremendous efforts have been made to modulate the properties of LNPs to unleash their full clinical potential. Among the strategies being pursued, the layer-by-layer (LbL) technique has gained considerable attention in the biomedical field.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most common and lethal primary brain cancer. Current pharmacological interventions marginally increase the 12-month overall survival of patients with GBM. Among the novel therapeutic strategies being pursued, micro-RNAs, a class of non-coding RNAs, are receiving considerable attention for their regulation of several pathways implicated in tumorigenesis and survival.
View Article and Find Full Text PDFUveal melanoma (UM) is the most common primary intraocular malignant tumor type in adults. Even after the treatment of the ocular tumor, the prognosis of patients with metastasis remains poor. Hence, an urgent unmet need exists to identify novel approaches to treat advanced UM.
View Article and Find Full Text PDFBackground: Research suggests that hormone replacement therapy may increase the risk of breast cancer, and progestins such as norethisterone (NET) play a key role in this phenomenon. We have demonstrated that microRNA-181a (miR-181a) suppresses NET-promoted breast cancer cell survival. Nonetheless, the effects of NET and miR-181a on the tumorigenesis of human breast epithelial cells have not yet been elaborated.
View Article and Find Full Text PDFRetinopathy of prematurity (ROP) is the primary cause of visual impairment and vision loss in premature infants, which results from the formation of aberrant retinal neovascularization (NV). An emerging body of evidence has shown that Müller cells are the predominant source of vascular endothelial growth factor (VEGF), which also serves as a chemoattractant for monocyte/macrophage lineage. The recruitment of macrophages is increased during retinal NV, and they exert a pro-angiogenic role in ROP.
View Article and Find Full Text PDFSurvivin stands out as one of the most specific cancer targets discovered to date. Although single inhibition, e.g.
View Article and Find Full Text PDFPurpose: Targeting β-adrenergic receptor signaling with propranolol has emerged as a potential candidate to counteract choroidal neovascularization (CNV). Little is known of its effect on macrophages, which play a critical role in CNV. We investigated the effect of propranolol on angiogenic response of mononuclear phagocytes (MPs).
View Article and Find Full Text PDFIn subretinal inflammation, activated mononuclear phagocytes (MP) play a key role in the progression of retinopathies. Little is known about the mechanism involved in the loss of photoreceptors leading to vision impairment. Studying retinal damage induced by photo-oxidative stress, we observed that cluster of differentiation 36 (CD36)-deficient mice featured less subretinal MP accumulation and attenuated photoreceptor degeneration.
View Article and Find Full Text PDFRetinopathy of prematurity (ROP) is characterized by an initial retinal avascularization, followed by pathologic neovascularization. Recently, choroidal thinning has also been detected in children formerly diagnosed with ROP; a similar sustained choroidal thinning is observed in ROP models. But the mechanism underlying the lack of choroidal revascularization remains unclear and was investigated in an oxygen-induced retinopathy (OIR) model.
View Article and Find Full Text PDFAim: Excess angiogenesis or neovascularization plays a key role in the pathophysiology of several ocular diseases such as retinopathy of prematurity, diabetic retinopathy, and exudative age-related macular degeneration. microRNA-181a (miR-181a) was found highly expressed in retina and choroidal tissues. This study intends to investigate the role of miR-181a in the regulation of ocular neovascularization in different pathophysiological conditions.
View Article and Find Full Text PDFIschemic retinopathies (IRs), such as retinopathy of prematurity (ROP), diabetic retinopathy (DR), and (in many cases) age-related macular degeneration (AMD), are ocular disorders characterized by an initial phase of microvascular changes that results in ischemia, followed by a second phase of abnormal neovascularization that may culminate into retinal detachment and blindness. IRs are complex retinal conditions in which several factors play a key role during the development of the different pathological stages of the disease. Increasing evidence reveals that oxidative stress and inflammatory processes are important contributors to the pathogenesis of IRs.
View Article and Find Full Text PDFAzapeptide analogues of growth hormone releasing peptide-6 (GHRP-6) exhibit promising affinity, selectivity, and modulator activity on the cluster of differentiation 36 receptor (CD36). For example, [A, azaF]- and [azaY]-GHRP-6 (1a and 2b) were previously shown to bind selectively to CD36 and exhibited respectively significant antiangiogenic and slight angiogenic activities in a microvascular sprouting assay using choroid explants. The influences of the 1- and 4-position residues on the affinity, anti-inflammatory, and antiangiogenic activity of these azapeptides have now been studied in detail by the synthesis and analysis of a set of 25 analogues featuring Ala or His and a variety of aromatic side chains at the aza-amino acid residue in the 4-position.
View Article and Find Full Text PDFPathological choroidal neovascularization (CNV) is the common cause of vision loss in patients with age-related macular degeneration (AMD). Macrophages possess potential angiogenic function in CNV. We have demonstrated that human T lymphocyte-derived microparticles (LMPs) exert a potent antiangiogenic effect in several pathological neovascularization models.
View Article and Find Full Text PDFRetinopathy of prematurity (ROP), the most common cause of blindness in premature infants, has long been associated with inner retinal alterations. However, recent studies reveal outer retinal dysfunctions in patients formerly afflicted with ROP. We have recently demonstrated that choroidal involution occurs early in retinopathy.
View Article and Find Full Text PDFRetinoblastoma (Rb) is an aggressive childhood cancer of the developing retina. This disease is associated with epigenetic deregulation of several cancer pathways including upregulation of the proto-oncogene spleen tyrosine kinase (SYK). We have previously demonstrated that lymphocyte-derived microparticles (LMPs) possess strong cytotoxic effect on cancer cells.
View Article and Find Full Text PDFInterest in the biological roles of cell membrane-derived vesicles in cell-cell communication has increased in recent years. Microparticles (MPs) are one such type of vesicles, ranging in diameter from 0.1 μm to 1 μm, and typically shed from the plasma membrane of eukaryotic cells undergoing activation or apoptosis.
View Article and Find Full Text PDFBackground: Unregulated cell proliferation or growth is a prominent characteristic of cancer. We have previously demonstrated that LMPs (cell membrane microparticles derived from apoptotic human CEM T lymphoma cells stimulated with actinomycin D) strongly suppress the proliferation of not only human endothelial cells but also mouse Lewis lung carcinoma cells.
Methods: LMPs were generated either from CEM T cells using different stimuli or from 3 different types of lymphocytes.
Angiogenesis of the microvasculature is central to the etiology of many diseases including proliferative retinopathy, age-related macular degeneration and cancer. A mouse model of microvascular angiogenesis would be very valuable and enable access to a wide range of genetically manipulated tissues that closely approximate small blood vessel growth in vivo. Vascular endothelial cells cultured in vitro are widely used, however, isolating pure vascular murine endothelial cells is technically challenging.
View Article and Find Full Text PDFPurpose: Choroidal neovascularization (CNV) is a major cause of vision loss in which choroidal vessels penetrate the RPE-an important source of growth factors, including nerve growth factor (NGF), whose activation via the p75NTR receptor promotes apoptosis and inhibits angiogenesis. We demonstrated previously that human T-lymphocyte-derived microparticles (LMPs) significantly inhibit angiogenesis in several models of ocular neovascularization. We investigated how LMPs modulate pro- and antiangiogenic microenvironments during choroidal angiogenesis.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
April 2012
Microparticles possess therapeutic potential regarding angiogenesis. We have demonstrated the contribution of apoptotic human CEM T lymphocyte-derived microparticles (LMPs) as inhibitors of angiogenic responses in animal models of inflammation and tumor growth. In the present study, we characterized the antivascular endothelial growth factor (VEGF) effects of LMPs on pathological angiogenesis in an animal model of oxygen-induced retinopathy and explored the role of receptor-mediated endocytosis in the effects of LMPs on human retinal endothelial cells (HRECs).
View Article and Find Full Text PDF