Background: Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with high clinical and genetic heterogeneity. In most cases, the cerebellar ataxia is not pure, and complicating clinical features such as pyramidal signs or extraneurological features are found.
Objective: To identify the genetic origin of the cerebellar ataxia for 3 consanguineous North African families presenting with ARCA.
Abetalipoproteinemia (ABL) is a rare monogenic disease characterized by very low plasma levels of cholesterol and triglyceride and almost complete absence of apolipoprotein B (apoB)-containing lipoproteins. Typically, patients present with failure to thrive, acanthocytosis, pigmented retinopathy and neurological features. It has been shown that ABL results from mutations in the gene encoding the microsomal triglyceride transfer protein (MTTP).
View Article and Find Full Text PDFAutosomal-recessive cerebellar ataxia (ARCA) comprises a large and heterogeneous group of neurodegenerative disorders with more than 20 different forms currently recognized, many of which are also associated with increased tone and some of which have limb spasticity. Gaucher disease is a lysosomal storage disease resulting from a defect in the enzyme acid β-glucosidase 1. β-glucosidase 2 is an enzyme with similar glucosylceramidase activity but to date has not been associated with a monogenic disorder.
View Article and Find Full Text PDFAtaxia with oculomotor apraxia type 2 (AOA2) is a recently described autosomal recessive cerebellar ataxia caused by mutations in the SETX gene. It is a rare monogenic disease characterized by progressive cerebellar ataxia, oculomotor apraxia, axonal sensorimotor neuropathy, and an elevated serum α-fetoprotein level. To date, >100 AOA2 patients have been described and 75 different mutations in the SETX gene have been identified.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is an autosomal recessive disease characterized by degeneration of the anterior horn cells of the spinal cord. The survival motor neuron (SMN) gene has been identified as an SMA-determining gene. SMN exists as two copies in 5q13, and deletions in exons 7 and 8 of the telomeric copy (SMN(T)) occur in 95% of patients, regardless of disease severity.
View Article and Find Full Text PDFHorizontal gaze palsy with progressive scoliosis (HGPPS) is a rare autosomal recessive disorder characterized by the congenital absence of horizontal gaze, progressive scoliosis, and failure of the corticospinal and somatosensory axon tracts to decussate in the medulla. HGPPS is caused by mutations of the ROBO3 gene, which encodes a protein that shares homology with the roundabout family of transmembrane receptors that are important in axon guidance and neuronal migration. To date, over 15 mutations have been found in consanguineous families of Greek, Italian, Turkish, Pakistani, Saudi Arabian, and Indian descent.
View Article and Find Full Text PDF