Both anti-angiogenesis and gene therapy involve complex processes depending on non-point parameters belonging to a space of values. To successfully overcome the challenges involved in their therapeutic approaches, there is a need to analyze the sensitivity of these parameters. In this paper, a new mathematical model that combines immune system stimulations, inflammatory processes associated with tumor development, and gene therapy aimed at enhancing the efficacy of both treatments are explored.
View Article and Find Full Text PDFDiffuse infiltrative gliomas are adjudged to be the most common primary brain tumors in adults and they tend to blend in extensively in the brain micro-environment. This makes it difficult for medical practitioners to successfully plan effective treatments. In attempts to prolong the lengths of survival times for patients with malignant brain tumors, novel therapeutic alternatives such as gene therapy with oncolytic viruses are currently being explored.
View Article and Find Full Text PDFVirus-induced activation of the beta interferon (IFN-beta) gene requires orderly recruitment of chromatin-remodeling complexes and time-regulated acetylation of histone residues K8H4 and K14H3 on the promoter region. We have previously shown that transcription factor Yin Yang 1 (YY1) binds the murine IFN-beta promoter at two sites (-122 and -90) regulating promoter transcriptional capacity with a dual activator/repressor role. In this work we demonstrate that both YY1 -122 and -90 sites are required for CBP recruitment and K8H4/K14H3 acetylation to take place on the IFN-beta promoter region after virus infection.
View Article and Find Full Text PDFPericentromeric gamma-satellite DNA is organized in constitutive heterochromatin structures. It comprises a 234 bp sequence repeated several thousands times surrounding the centromeric sequence of all murine chromosomes. Potential binding sites for transcription factor Yin Yang 1 (YY1), a repressor or activator of several cellular and viral genes, are present in pericentromeric gamma-satellite DNA.
View Article and Find Full Text PDF